Picard group

Last modified date: <%+ tp.file.last_modified_date() %>



Picard group

Symmetric monoidal categories

attachments/Pasted%20image%2020220505162503.png

Presentable infty categories

attachments/Pasted%20image%2020220505164000.png

Classical

See invertible module

attachments/Pasted%20image%2020220126101253.png attachments/Pasted%20image%2020220126101220.png attachments/Pasted%20image%2020220214091859.png

  • For a line bundle on \(X\) with the tensor product.

    • \(\operatorname{Pic}\operatorname{Spec}R = \operatorname{Cl} (R)\) is the class group for a Dedekind domain
    • Globalizes the notion of a number field.?
  • Alternatively, the Picard group can be defined as the sheaf cohomology \begin{align*}H^{1} (X,{\mathcal {O}}_{X}^{\times}).\end{align*}

  • Fits into a SES \begin{align*} 0\to \operatorname{Pic}^0(V) \to\operatorname{Pic}(V) \to {\operatorname{NS}}(V) \to 0 \end{align*} where \({\operatorname{NS}}\) is the Neron Severi group.

Picard group of a manifold

attachments/Pasted image 20210510011342.png

attachments/Pasted image 20210603195814.png attachments/Pasted image 20210603195858.png

attachments/Pasted image 20210626203400.png

Pic 0

attachments/Pasted%20image%2020220214093435.png

Picard stacks

attachments/Pasted%20image%2020220516183841.png attachments/Pasted%20image%2020220516183856.png

Links to this page
#AG #NT #todo/add-references #unanswered_questions