Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
-
Links:
- examples of Picard group computations
Picard group
Symmetric monoidal categories
Presentable infty categories
Classical
-
For a line bundle on \(X\) with the tensor product.
- \(\operatorname{Pic}\operatorname{Spec}R = \operatorname{Cl} (R)\) is the class group for a Dedekind domain
- Globalizes the notion of a number field.?
-
Alternatively, the Picard group can be defined as the sheaf cohomology \begin{align*}H^{1} (X,{\mathcal {O}}_{X}^{\times}).\end{align*}
-
Fits into a SES \begin{align*} 0\to \operatorname{Pic}^0(V) \to\operatorname{Pic}(V) \to {\operatorname{NS}}(V) \to 0 \end{align*} where \({\operatorname{NS}}\) is the Neron Severi group.
- This may require that \(V\) is a Jacobian? Or something special happens when it is? #unanswered_questions
Picard group of a manifold
Pic 0
Picard stacks