Neron-Tate height

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #pairing - Refs: - Height functions in number theory: https://people.math.harvard.edu/~sli/notes/math383_w18_notes.pdf#page=1 #resources/course-notes - Links: - Mordell-Weil - abelian variety - global field - elliptic curves


Neron-Tate height

A quadratic form on the Mordell-Weil group of rational points on an elliptic curve, or more generally an abelian variety.

attachments/Pasted%20image%2020220502095053.png

Elliptic regulator

The bilinear form associated to the canonical height \(\widehat{h}\) on an elliptic curve \(E\) is \begin{align*} \langle P, Q\rangle=\frac{1}{2}(\widehat{h}(P+Q)-\widehat{h}(P)-\widehat{h}(Q)) . \end{align*} The elliptic regulator of \(E / K\) is \begin{align*} \operatorname{Reg}(E_{/ {K}} )\coloneqq\operatorname{det}G,\qquad G_{ij} \coloneqq{\left\langle {P_i},~{P_j} \right\rangle} \end{align*} where \(\left\{{P_i}\right\}\) is a basis of \(E(K)\otimes_{\mathbf{Z}}{\mathbf{Q}}\), the free part of the Mordell-Weil group of \(E\).

Links to this page
#pairing #resources/course-notes