Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - representation theory
Maschke’s theorem
Any submodule \(V \leq W \in {}_{G}{\mathsf{Mod}}\) has a \(G{\hbox{-}}\) invariant complement. Proof: choose \(\pi:W\to V\) a projection and define \begin{align*} \pi_{G}(x)=\frac{1}{|G|} \sum_{g \in G} g \cdot \pi\left(g^{-1} \cdot x\right). \end{align*}
Alternative statement: $kG \in {}_{k} \mathsf{Alg} $ is semisimple.