Lefschetz motive

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - derived stack - K theory in AG - weighted point count


Lefschetz motive

  • \({\mathbb{L}}= [{\mathbf{A}}^1_{/ {k}} ]\) is the Lefschetz motive and \({\mathbb{T}}= {\mathbb{L}}^{-1}\) is the Tate motive, its tensor inverse.

attachments/Pasted%20image%2020220408100217.png attachments/Pasted%20image%2020220408100238.png

attachments/Pasted%20image%2020220420134919.png

attachments/Pasted%20image%2020220529013737.png

\begin{align*} {\mathbf{Z}}(1) \coloneqq M{\mathbf{Z}}_X \wedge\Sigma^\infty ({\mathbf{P}}^1, \left\{{\infty}\right\})[-2] \qquad \in {\mathsf{DM}}(X) \end{align*}

Links to this page
#todo/untagged #todo/add-references