Learning Resources: Number Theory

#MOC/resources

Class Field Theory

Advice:

Resources

Seminar on Iwasawa theory

Galois cohomology: http://www2.math.umd.edu/~lcw/Boston.pdf

Algebraic Number Theory

See Learning Algebraic Number Theory

Modular Forms

Arithmetic Geometry

Abelian Varieties

Rational Points

Langlands

Misc

Some Courses at Stanford, 2014-2019


Course

Title

Lecturer

249A (2018)

Automorphy Lifting (in progress)

Richard Taylor

249C (2017)

Geometric Quantization and Representation Theory (in progress)

Akshay Venkatesh

249B (2017)

Alterations. (Due to a broken hand, this was picked up by Aaron Landesman.)

Brian Conrad

245C (2016)

Geometry of Numbers

Akshay Venkatesh

249B (2016)

Reductive Groups over Fields

Brian Conrad

245B (2016)

Enumerating Curves in Calabi-Yau Threefolds (under revision)

Jun Li

258 (2016)

Higgs Bundles and Non-Abelian Hodge Theory (under revision)

Rafe Mazzeo

263C (2015)

The Analytic Class Number Formula and L-functions (Under revision)

Akshay Venkatesh

245C (2015)

Automorphic Forms on Shimura Varieties (Under revision)

Zhiyuan Li

249C (2015)

Abelian Varieties (Under revision)

Brian Conrad

282C (2015)

Fiber Bundles and Cobordism (Under revision)

Dan Berwick-Evans

245B (2015)

Equivariant Algebraic Geometry

Ravi Vakil

263B (2015)

Modular Representation Theory

Dan Bump

249B (2015)

The Langlands Correspondence for Global Function Fields

Zhiwei Yun

248 (2014)

Introduction to Ergodic Theory

Maryam Mirzakhani

#MOC/resources #resources/summaries