Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
-
Links:
- Abel-Jacobi theorem
- Torelli
Jacobian
For \(C\) a nonsingular algebraic curve, \(\operatorname{Jac}(C)\) is the connected component of the identity in the Picard group \(\operatorname{Pic}(C)\), i.e. the moduli space of degree 0 line bundles on \(C\). Over \({\mathbf{C}}\), can be realized as \(\operatorname{Jac}(C) \cong H^0(X; \Omega^1_{C}) {}^{ \vee }/ H^1(X; {\mathcal{O}}_X)\), where the embedding \(H^1\hookrightarrow H^0\) uses theta functions.