Jacobian

Last modified date: <%+ tp.file.last_modified_date() %>



Jacobian

For \(C\) a nonsingular algebraic curve, \(\operatorname{Jac}(C)\) is the connected component of the identity in the Picard group \(\operatorname{Pic}(C)\), i.e. the moduli space of degree 0 line bundles on \(C\). Over \({\mathbf{C}}\), can be realized as \(\operatorname{Jac}(C) \cong H^0(X; \Omega^1_{C}) {}^{ \vee }/ H^1(X; {\mathcal{O}}_X)\), where the embedding \(H^1\hookrightarrow H^0\) uses theta functions.

attachments/Pasted%20image%2020220806174542.png

🗓️ Timeline
  • 2021-05-05
    This talk: \(r=g\), allows finding a basis for \({\mathbf{Q}}_p\) valued functions on \(J({\mathbf{Q}})\). (see Jacobian).
Links to this page
#AG/moduli-spaces #todo/add-references