Ind objects

Last modified date: <%+ tp.file.last_modified_date() %>



Ind objects

\({\mathsf{Ind}}(\mathsf{C})\) is the category of formal filtered colimits (“inductive systems”) of objects in \(\mathsf{C}\). How to do this: take the free cocompletion \(\mathsf{C} \to [\mathsf{C}, {\mathsf{Set}}]\) and compute the colimit there.

attachments/Pasted%20image%2020210630222723.png

Pro objects

\({\mathsf{Pro}}\mathsf{C}\) is the category of formal limits (“projective systems”) of objects in \(\mathsf{C}\). Take the free completion \(\mathsf{C} \to { { [\mathsf{C}, {\mathsf{Set}}] }^{\operatorname{op}}}\)

🗓️ Timeline
Links to this page
#higher-algebra #todo/add-references