Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
-
Links:
- kappa filtered
Ind objects
\({\mathsf{Ind}}(\mathsf{C})\) is the category of formal filtered colimits (“inductive systems”) of objects in \(\mathsf{C}\). How to do this: take the free cocompletion \(\mathsf{C} \to [\mathsf{C}, {\mathsf{Set}}]\) and compute the colimit there.
Pro objects
\({\mathsf{Pro}}\mathsf{C}\) is the category of formal limits (“projective systems”) of objects in \(\mathsf{C}\). Take the free completion \(\mathsf{C} \to { { [\mathsf{C}, {\mathsf{Set}}] }^{\operatorname{op}}}\)