Hopf algebra



Hopf algebra

attachments/Pasted%20image%2020210731183646.png

attachments/Pasted%20image%2020210731191606.png

attachments/Pasted%20image%2020210731191629.png

  • Comultiplication: \(\Delta: H\to H{ {}^{ \scriptstyle\otimes_{k}^{2} } }\)
  • Counit \({\varepsilon}; H\to k\)
  • Antipode \(S: H{\circlearrowleft}\)

16:16

  • See Manin’s universal quantum groups.

    • Manin defines a universal bialgebra for \(A\), which coacts on \(A\) in a universal way.

    • See Unsorted/koszul duality

    • Forgetful functor from Hopf algebras to bialgebras has a left adjoint: the Hopf envelope.

    • Universal quantum group: take Hopf envelope of universal bialgebra.

  • See quadratic algebra

  • Twisting conditions for bialgebras: \(B\) is \({\mathbf{Z}}{\hbox{-}}\)graded and \(\Delta(B_n) \subseteq B{ {}^{ \scriptstyle\otimes_{k}^{2} } }\).

  • Zhang twist: supplies a twisted multiplication.

    • Possibly related to alpha twisted vector space?

    • \({\mathsf{A}{\hbox{-}}\mathsf{grMod}} { \, \xrightarrow{\sim}\, }{\mathsf{A^{\phi}}{\hbox{-}}\mathsf{grMod}}\) for \(A^{\phi}\) a Zhang twist.

  • Morita-Takeuchi equivalence: equivalence of categories of comodules.

  • This talk compares cocycle twists to Zhang twists.

  • For \({\mathcal{O}}(G)\) the coordinate ring of \(G\in \mathsf{Alg} {\mathsf{Grp}}\), elements \(g\in G\) induce automorphism \(r_g, \ell_g: {\mathcal{O}}(G){\circlearrowleft}\) by left/right translation, and every twisting pair is of the form \((r_g, \ell_g^{-1})\).

  • Sovereign: equivalence between left and right duality functors.

  • Pointed algebra: simple comodules are 1-dimensional

  • Smash product of Hopf algebras: \(H_1\otimes H_2\) as a vector space, with a deformed multiplication.

    • Example: \(U({\mathfrak{g}})\wedge k[G]\).
  • See quantum Yang Baxter equations. Solutions are \(R\in { \operatorname{End} }_k(V{ {}^{ \scriptstyle\otimes_{2}^{)} } }\) satisfying a tensor formula corresponding to moving strands in a braid.

    • Can be obtained from any braiding on \({\mathsf{H}{\hbox{-}}\mathsf{coMod}}\).

    • Use equivalence of braided monoidal cats to get new solutions: \(\cmods{H} { \, \xrightarrow{\sim}\, }\comod{A(R) \left[ { \scriptstyle { {g}^{-1}} } \right]} { \, \xrightarrow{\sim}\, }{\mathsf{A(R) \left[ { \scriptstyle { {g}^{-1}} } \right]^{\sigma}}{\hbox{-}}\mathsf{coMod}}\).

Examples

The group algebra: attachments/Pasted%20image%2020220316211737.png attachments/Pasted%20image%2020220316212016.png

  • \(k[G]\) for \(g\in {\mathsf{Fin}}{\mathsf{Grp}}\) with \(g\to g\otimes g, g\to 1, g\to g^{-1}\)
  • \(U({\mathfrak{g}})\) with \(x\to x\otimes 1 + 1\otimes x, x\to 0, x\to x^{-1}\).
  • The coordinate ring of any \(X\in \mathsf{Alg} {\mathsf{Grp}}\).
  • Actions: \(H\curvearrowright M\) where \(\lambda: H\otimes M\to M\) compatible with mult
  • Coaction: \(\rho: M\to H\otimes M\) compatible with comult.
  • Convolution algebra: \(\mathop{\mathrm{Hom}}_k(H, k)\) under \(fg \mapsto \mu_k \circ (f\otimes g) \circ \Delta_H\) for \(\Delta_H\) the comult on \(H\) and \(\mu_k\) the multiplication on \(k\).
  • Can twist multiplication by a 2-cocycle \(\sigma: H{ {}^{ \scriptstyle\otimes_{2}^{\to } } }k\).
#lie-theory #todo/add-references