Formal group



Formal group

attachments/Pasted%20image%2020220508195254.png

attachments/Pasted%20image%2020220508202029.png attachments/Pasted%20image%2020220508202046.png

Formal group laws

attachments/Pasted%20image%2020220508194954.png

In chromatic homotopy

See chromatic homotopy:

  • Start with the universal complex line bundle \({\mathcal{L}}\downto {\mathbf{B}}\operatorname{GL}_1({\mathbf{C}})\simeq{\mathbf{CP}}^\infty\).
  • Tensoring bundles induces operations: \({\mathcal{L}}_1 \otimes{\mathcal{L}}_1 \leadsto {\mathbf{CP}}^\infty \times {\mathbf{CP}}^\infty \to {\mathbf{CP}}^\infty\).
  • Note \(H_*({\mathbf{CP}}^\infty; {\mathbf{Z}}) \cong {\mathbf{Z}}{\left[\left[ t \right]\right] }\) for \(t= c_1\) the first Chern class and \(H^*({\mathbf{CP}}^\infty{ {}^{ \scriptscriptstyle\times^{2} } }) \cong {\mathbf{Z}}{\left[\left[ x, y \right]\right] }\), so applying homology to the product map yields \(H^*({\mathbf{CP}}^\infty; {\mathbf{Z}}) \to H^*({\mathbf{CP}}^\infty{ {}^{ \scriptscriptstyle\times^{2} } }; {\mathbf{Z}})\) which is entirely determined by an assignment \(t\mapsto F(x, y)\).
  • Since \(c_1({\mathcal{L}}_1 \otimes{\mathcal{L}}_2) = c_1 {\mathcal{L}}_1 + c_1{\mathcal{L}}_2\), this forces \(F(x,y) = x + y\).
  • Generalizing: a cohomology theory \(E\) is complex oriented iff \(E^*({\mathbf{CP}}^\infty) \cong E_*{\left[\left[ t \right]\right] } \coloneqq E^*({\operatorname{pt}}){\left[\left[ t \right]\right] }\).
  • Tensoring similarly induces maps \(E_*{\left[\left[ t \right]\right] } \to E_*{\left[\left[ x, y \right]\right] }\) where \(t\mapsto F_E(x, y)\).
  • Properties that define a 1-dimensional commutative formal group law:
    • \({\mathcal{L}}\otimes\underline{{\mathbf{C}}} \cong {\mathcal{L}}\implies F(x, 0) = x\)
    • \({\mathcal{L}}_1 \otimes{\mathcal{L}}_2 \cong {\mathcal{L}}_2 \otimes{\mathcal{L}}_1 \implies F(x,y) = F(y, x)\).
    • Associativity of tensoring \(\implies F(F(x,y), z) = F(x, F(y, z))\)
  • Note that these axioms guarantee that \(F_E(x, y) = x + y + { \mathsf{O}} (x^2, xy, y^2)\).
  • Idea: a formal group is a germ of an algebraic group. E.g. \(F(x, y) \coloneqq x+y \leadsto \widehat{{\mathbf{G}}_a}\), the germ of \({\mathbf{G}}_a\).
    • Example: the FGL of complex K theory is \(\widehat{{\mathbf{G}}_m}\), the germ of \({\mathbf{G}}_m\).
  • \(E \mapsto F_E(x, y)\) yields a functor from complex-oriented cohomology theories to FGLs, whose partial inverse is given by Landweber exactness.
  • Defining heights: given \(F\in R{\left[\left[ x, y \right]\right] }\), define an \(n{\hbox{-}}\)series inductively by \([1]_F(x) \coloneqq x\) and \([n]_F(x) \coloneqq F(x, [n-1]_F(x))\).
    • In short: \([n]_F(x) = x +_F x +_F + \cdots +_F x\) where \(a+_F b \coloneqq F(a, b)\).
    • This yields \([n]_F(x) = nx + { \mathsf{O}} (x^2, xy, y^2)\).
    • If \(\operatorname{ch}R = p\) then \([p]_F(x) = { \mathsf{O}} (x^2, xy, y^2)\).
    • In general, \([p]_F(x) = ux^{p^n} + { \mathsf{O}} (x^{p^n + 1}, y^{p^n+1}, \cdots)\) for some \(u\in R^{\times}\), so define \(n\) to be the height.
  • Over \({ \mathbf{F} }_p\), for every height \(n\) define the Honda FGL \(H_{n, p}\) whose \(p{\hbox{-}}\)series is \([p](x) = x^{p^n}\).
  • Examples:
    • \(H_{1, p} \leadsto \widehat{{\mathbf{G}}_m}({ \mathbf{F} }_p)\) and \({\mathsf{K}}(1, p) = {\operatorname{KU}}/p\).
    • \(H_{\infty, p} \leadsto \widehat{{\mathbf{G}}_a}({ \mathbf{F} }_p)\) and \({\mathsf{K}}(\infty, p) = \mathsf{H}{ \mathbf{F} }_p\)
    • Define \(H_{0, p}\) to identify with \(\mathsf{H}{\mathbf{Q}}\).
  • Deformations:
    • Let \(k\) be a perfect field of characteristic \(p\), let \(F\) be a formal group law over \(k\), and let \((A, \mathfrak{m})\) be a complete local ring with projection \(A \stackrel{\pi}{\rightarrow} A / \mathfrak{m}\) to its residue field. A deformation of \(F\) from \(k\) to \(A\) is a formal group law \(\mkern 1.5mu\overline{\mkern-1.5muF\mkern-1.5mu}\mkern 1.5mu\) over \(A\) and a map \(k \stackrel{i}{\rightarrow} A / \mathfrak{m}\) such that \(\pi^{*} \mkern 1.5mu\overline{\mkern-1.5muF\mkern-1.5mu}\mkern 1.5mu=i^{*} F\) over \(A / \mathfrak{m}\).
    • Form a set \(\operatorname{Def} _{F_{/ {k}} }(A)\) of deformations of \(F\) from \(k\) to \(A\) and a functor \(\operatorname{Def} _{F_{/ {k}} }({-}):\mathsf{CRing}\to {\mathsf{Set}}\). This is representable by the Lubin-Tate ring \(\LT_{F_{/ {k}} }\), so \(\operatorname{Def} _{F_{/ {k}} }({-}) \cong {\mathsf{Top}}\mathsf{CRing}^{\mathsf{loc}}(\LT_{F_{/ {k}} }, {-})\).
    • There is a universal deformation \(\tilde F \downto \LT_{F_{/ {k}} }\).
  • The universal deformations of the Honda formal group laws, \(\tilde H_{n, p}\) correspond to Morava E theory \(E_{n, p}\), which live over the Lubin-Tate rings \(\LT_{ H_{n, p} {}_{/ {{ \mathbf{F} }_p}} }= { {\mathbf{Z}}_{\widehat{p}} }{\left[\left[ u_1,\cdots, u_{n-1} \right]\right] }\).

Notes

attachments/Pasted%20image%2020220408133756.png

  • From Tyler Genao: for \((R, {\mathfrak{m}})\) is a complete local ring, can plug \({\mathfrak{m}}\) into a formal group law to construct a group whose underlying set is \({\mathfrak{m}}\)
    • Makes the power series converge.

attachments/Pasted%20image%2020220505161428.png

attachments/Pasted%20image%2020220508195431.png

Examples

attachments/Pasted%20image%2020220317205027.png attachments/Pasted%20image%2020220408133909.png attachments/Pasted%20image%2020220408133948.png

attachments/Pasted%20image%2020220408134041.png attachments/Pasted%20image%2020220408134120.png

attachments/Pasted%20image%2020220508195054.png

Applications

Constructing the maximal abelian extension of a local field: attachments/Pasted%20image%2020220408134241.png attachments/Pasted%20image%2020220408134249.png

Height

#todo

🗓️ Timeline
Links to this page
#arithmetic-geometry #homotopy/stable-homotopy #resources/books #resources/notes #resources/slides #resources/summaries #todo