Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
Enriques-Kodaira Classification
-
Work over \({\mathbf{C}}\) for simplicity, take all dimensions over \({\mathbf{C}}\).
-
Minimal model program : classifying complex projective varieties.
-
Stratify the moduli space of varieties by \({\mathbf{k}}{\hbox{-}}\)dimension.
-
Dimension 1:
- Smooth Algebraic curves = compact Riemann surfaces, classifed by genus
- Roughly known by Riemann: moduli space of smooth projective curves \({\mathcal{M}}_g\) is a connected open subset of a projective variety of dimension \(3g-3\).
-
Dimension 2:
-
Smooth Algebraic Surfaces : Hard. See Enriques classification.
-
Setting of classical theorem: always 27 lines on a cubic surface!
-
Example Clebsch surface, satisfies the system \begin{align*} \begin{array}{l} x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0 \\ \\ x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=0 \end{array} \end{align*}
-
Kodaira dimension