Enriques-Kodaira Classification

Last modified date: <%+ tp.file.last_modified_date() %>



Enriques-Kodaira Classification

  • Work over \({\mathbf{C}}\) for simplicity, take all dimensions over \({\mathbf{C}}\).

  • Minimal model program : classifying complex projective varieties.

  • Stratify the moduli space of varieties by \({\mathbf{k}}{\hbox{-}}\)dimension.

  • Dimension 1:

    • Smooth Algebraic curves = compact Riemann surfaces, classifed by genus
    • Roughly known by Riemann: moduli space of smooth projective curves \({\mathcal{M}}_g\) is a connected open subset of a projective variety of dimension \(3g-3\).
  • Dimension 2:

    • Smooth Algebraic Surfaces : Hard. See Enriques classification.

    • Setting of classical theorem: always 27 lines on a cubic surface!

    • Example Clebsch surface, satisfies the system \begin{align*} \begin{array}{l} x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0 \\ \\ x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=0 \end{array} \end{align*}

Kodaira dimension

attachments/Pasted%20image%2020220806235626.png

attachments/Pasted%20image%2020220806235648.png

#todo/untagged #todo/add-references