Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
-
Links:
- Moore space
- Eckman-Hilton
- cohomotopy
Eilenberg-MacLane spaces
Questions
-
Why do Eilenberg-MacLane spaces have complicated higher cohomology?
- Dually, why do spheres have higher complicated homotopy?
-
\({\mathbf{B}}G \simeq K(G, 1)\) and \({\mathbf{B}}^n G \simeq K(G, n)\) when \(n\geq 2\) for \(G\) an abelian discrete group.
- What is \({\mathbf{B}}^n\)?
- What is \(\pi_* {\mathbf{B}}G\) for \(G\) nonabelian and nondiscrete? #todo/questions
Results
- \({\Omega}^n {\mathbf{B}}^n G \simeq G\).
Uniqueness of E-M Spaces
If \(X\) is a space with one nontrivial homology group \(G\) in degree \(k\), so that \(X\) satisfies \begin{align*}\pi_i(X) = \cases{G,~i=k\\0,~\text{otherwise}}\end{align*} Then \(X \simeq K(G, k)\).
*Note: two spaces with isomorphic homotopy groups may *not* be homotopy-equivalent in general - this is one exception.*
Construction