Day convolution

Last modified date: <%+ tp.file.last_modified_date() %>



Day convolution

attachments/Pasted%20image%2020220510150912.png

  • Turns the functor category Fun(Cop,D) into a monoidal category Funˆ(Cop,D).

For C be a symmetric monoidal category over another monoidal category (D,D), and define a convolution product ˆ:Fun(Cop,D)×2Fun(Cop,D)(F,G)FˆG where FˆG is the following left Kan extension :

Link to Diagram

Here the diagram is not required to commute, but rather satisfy some universal property: there is an equivalence of categories? #todo

CD(FˆG,?)C2D(D(F,G),?C).

Equivalently, take the 2-category of cocomplete tensor categories Catc, Catc(Funˆ(Cop,D),?)Catc(C,?)×Cat(D,?).

Equivalently, define by the following coend : FˆG():=x,yCC(xCy,)DF(x)DG(y).

attachments/Pasted%20image%2020220316203634.png attachments/Pasted%20image%2020220320035436.png

#homotopy/stable-homotopy/equivariant #todo