Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
-
Links:
- coend
Day convolution
- Turns the functor category Fun(Cop,D) into a monoidal category Funˆ⊗(Cop,D).
For C be a symmetric monoidal category over another monoidal category (D,⊗D), and define a convolution product ˆ⊗:Fun(Cop,D)×2→Fun(Cop,D)(F,G)↦Fˆ⊗G where Fˆ⊗G is the following left Kan extension :
Here the diagram is not required to commute, but rather satisfy some universal property: there is an equivalence of categories? #todo
CD(Fˆ⊗G,?)≅C2D(⊗D∘(F,G),?∘⊗C).
Equivalently, take the 2-category of cocomplete tensor categories Catc⊗, Catc⊗(Funˆ⊗(Cop,D),?)≅Catc⊗(C,?)×Cat⊗(D,?).
Equivalently, define by the following coend : Fˆ⊗G(−):=∫x,y∈CC(x⊗Cy,−)⊗DF(x)⊗DG(y).