Last modified date: <%+ tp.file.last_modified_date() %>
- Tags
- Refs:
- Links:
Cartier divisor
File:attachments/Pasted image 20210626203352.png
Last modified date: <%+ tp.file.last_modified_date() %>
File:attachments/Pasted image 20210626203352.png
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - Types of divisors: - big - nef divisor - Weil divisor - Cartier divisor - Ample divisor - irreducible divisor - O(D) for D a divisor - linearly equivalent divisors - Weil reciprocity - Neron Severi
A blow-up is a rational morphism transformation that replaces a closed subscheme with an effective Cartier divisor. Precisely, given a Noetherian scheme \(X\) and a closed subscheme \(Z \subset X\), the blow-up of \(X\) along \(Z\) is a proper morphism \(\pi: \widetilde{X} \rightarrow X\) such that
Tags: #AG Refs: Cartier divisor dualizing sheaf canonical divisor