mapping class group
Tags: #geomtop/MCG #projects/my-talks #projects/review
Setup
-
All manifolds:
- Connected
- Oriented
- 2nd countable (countable basis)
- Hausdorff (separate with disjoint neighborhoods, uniqueness of limits)
- With boundary (possibly empty)
-
Weakly Hausdorff: every continuous image of a compact Hausdorff space into it is closed.
-
Compactly generated: sets are closed iff their intersection with every compact subspace is closed.
-
Curves: simple, closed, oriented
-
Surfaces: these guys
-
For \(X, Y\) topological spaces, consider \begin{align*} Y^X = C(X, Y) = \hom_{\mathsf{Top}}(X, Y) \coloneqq\left\{{f: X\to Y {~\mathrel{\Big\vert}~}f\,\,\text{is continuous}}\right\} .\end{align*}
\newpage
The Compact-Open Topology
-
General idea: cartesian closed categories, require exponential objects or internal homs: i.e. for every hom set, there is some object in the category that represents it
- Slogan: we’d like homs to be spaces.
-
Can make this work if we assume WHCG: weakly Hausdorff and compactly generated.
-
Topologize with the compact-open topology \({\mathcal{O}}_{\text{CO}}\): \begin{align*} U \in {\mathcal{O}}_{\text{CO}} \iff \forall f\in U, \quad f(K) \subset Y \text{ is open for every compact } K\subseteq X .\end{align*}
Mapping Spaces
-
So define \begin{align*} \mathop{\mathrm{Maps}}(X, Y) \coloneqq(\hom_{\mathsf{Top}}(X, Y), {\mathcal{O}}_{\text{CO}}) \qquad\text{where }{\mathcal{O}}_{\text{CO}}\text{ is the compact-open topology} .\end{align*}
-
Can immediately define interesting derived spaces:
- \({\operatorname{Homeo}}(X, Y)\) the subspace of homeomorphisms
- \(\mathrm{Imm}(X, Y)\), the subspace of immersions (injective map on tangent spaces)
- \(\mathrm{Emb}(X, Y)\), the subspace of embeddings (immersion + diffeomorphic onto image)
- \(C^k(X, Y)\), the subspace of \(k\times\) differentiable maps
- \(C^\infty(X, Y)\) the subspace of smooth maps
- \(\mathrm{Diffeo}(X ,Y)\) the subspace of diffeomorphisms
- \(C^\omega(X, Y)\) the subspace of analytic maps
- \(\mathrm{Isom}(X, Y)\) the subspace of isometric maps (for Riemannian metrics)
- \([X, Y]\) homotopy classes of maps
\newpage
Aside on Analysis
-
If \(Y = (Y, d)\) is a metric space, this is the topology of “uniform convergence on compact sets”: for \(f_n \to f\) in this topology iff \begin{align*} {\left\lVert {f_n - f} \right\rVert}_{\infty, K} \coloneqq\sup \left\{{d(f_n(x), f(x)) {~\mathrel{\Big\vert}~}x\in K}\right\}\overset{n\to\infty}\to 0 \quad \forall K\subseteq X \,\,\text{compact} .\end{align*}
- In words: \(f_n\to f\) uniformly on every compact set.
-
If \(X\) itself is compact and \(Y\) is a metric space, \(C(X, Y)\) can be promoted to a metric space with
\begin{align*} d(f, g) = \sup_{x\in X}(f(x), g(x)) .\end{align*}
\newpage
Path Spaces
-
Can immediately consider some interesting spaces via the functor \(\mathop{\mathrm{Maps}}({-}, Y)\): \begin{align*} X = {\operatorname{pt}}&\leadsto \quad \mathop{\mathrm{Maps}}({\operatorname{pt}}, Y) \cong Y \\ X= I &\leadsto\quad \mathcal{P}Y \coloneqq\left\{{f: I\to Y}\right\} = Y^I \\ X= S^1 &\leadsto\quad \mathcal{L}Y \coloneqq\left\{{f: S^1\to Y }\right\} = Y^{S^1} .\end{align*}
-
Adjoint property: there is a homeomorphism \begin{align*} \mathop{\mathrm{Maps}}(X\times Z, Y) &\leftrightarrow_{\cong} \mathop{\mathrm{Maps}}(Z, Y^X) \\ H:X\times Z \to Y &\iff \tilde H: Z\to \mathop{\mathrm{Maps}}(X, Y)\\ (x, z) \mapsto H(x,z) &\iff z \mapsto H({-}, z) .\end{align*}
-
Categorically, \(\hom(X, {-}) \leftrightarrow (X\times{-})\) form an adjoint pair in \({\mathsf{Top}}\).
-
A form of this adjunction holds in any cartesian closed category (terminal objects, products, and exponentials)
-
\newpage
Homotopy and Isotopy in Terms of Path Spaces
-
Can take basepoints to obtain the base path space \(PY\), the based loop space \(\Omega Y\).
-
Importance in homotopy theory: the path space fibration \begin{align*} \Omega Y \hookrightarrow PY \xrightarrow{\gamma \mapsto \gamma(1)} Y \end{align*}
- Plays a role in “homotopy replacement”, allows you to assume everything is a fibration and use homotopy long exact sequences.
-
Fun fact: with some mild point-set conditions (Locally compact and Hausdorff), \begin{align*} \pi_0 \mathop{\mathrm{Maps}}(X, Y) = \left\{{[f],\, \text{homotopy classes of maps }f: X\to Y}\right\} ,\end{align*} i.e. two maps \(f, g\) are homotopic \(\iff\) they are connected by a path in \(\mathop{\mathrm{Maps}}(X, Y)\).
Picture!
\newpage
Proof
\begin{align*} \mathcal{P}\mathop{\mathrm{Maps}}(X, Y) = \mathop{\mathrm{Maps}}(I, Y^X) \cong \mathop{\mathrm{Maps}}(X\times I, Y) ,\end{align*} and just check that \(\gamma(0) = f \iff H(x, 0) = f\) and \(\gamma(1) = g \iff H(x, 1) = g\).
- Interpretation: the RHS contains homotopies for maps \(X\to Y\), the LHS are paths in the space of maps.
\newpage
Defining the Mapping Class Group
Isotopy
-
Define a homotopy between \(f, g: X\to Y\) as a map \(F:X\times I \to Y\) restricting to \(f, g\) on the ends.
- Equivalently: a path, an element of \(\mathop{\mathrm{Maps}}(I, C(X, Y))\).
-
Isotopy: require the partially-applied function \(F_t:X\to Y\) to be homeomorphisms for every \(t\).
- Equivalently: a path in the subspace of homeomorphisms, an element of \(\mathop{\mathrm{Maps}}(I, {\operatorname{Homeo}}(X, Y))\)
Picture: picture of homotopy, paths in \(\mathop{\mathrm{Maps}}(X, Y)\), subspace of homeomorphisms.
\newpage
Self-Homeomorphisms
-
In any category, the automorphisms form a group.
-
In a general category \(\mathcal{C}\), we can always define the group \(\mathop{\mathrm{Aut}}_{\mathcal{C}}(X)\).
- If the group has a topology, we can consider \(\pi_0 \mathop{\mathrm{Aut}}_{\mathcal{C}}(X)\), the set of path components.
- Since groups have identities, we can consider \(\mathop{\mathrm{Aut}}^0_{\mathcal{C}}(X)\), the path component containing the identity.
-
So we make a general definition, the extended mapping class group: \begin{align*} {\operatorname{MCG}}^\pm_{\mathcal{C}}(X) \coloneqq\mathop{\mathrm{Aut}}_{\mathcal{C}}(X) / \mathop{\mathrm{Aut}}_{\mathcal{C}}^0(X) .\end{align*}
-
Here the \(\pm\) indicates that we take both orientation preserving and non-preserving automorphisms.
-
Has an index 2 subgroup of orientation-preserving automorphisms, \({\operatorname{MCG}}^+(X)\).
-
Can define \({\operatorname{MCG}}_{{\partial}}(X)\) as those that restrict to the identity on \({{\partial}}X\).
-
Picture: quotienting out by identity component
\newpage
Definitions in Several Categories
-
Now restrict attention to
\begin{align*}
{\operatorname{Homeo}}(X) \coloneqq\mathop{\mathrm{Aut}}_{{\mathsf{Top}}}(X) = \left\{{f\in \mathop{\mathrm{Maps}}(X, X) {~\mathrel{\Big\vert}~}f \text{ is an isomorphism}}\right\} \\
\qquad\text{equipped with }{\mathcal{O}}_{\text{CO}}
.\end{align*}
- Taking \({\operatorname{MCG}}^\pm_{\mathsf{Top}}(X)\) yields homeomorphism up to homotopy
-
Similarly, we can do all of this in the smooth category:
\begin{align*}
{\operatorname{Diffeo}}(X) \coloneqq\mathop{\mathrm{Aut}}_{C^\infty}(X)
.\end{align*}
- Taking \({\operatorname{MCG}}_{C^\infty}(X)\) yields diffeomorphism up to isotopy
-
Similarly, we can do this for the homotopy category of spaces:
\begin{align*}
\text{ho}(X) \coloneqq\left\{{[f] \in [X, Y]}\right\}
.\end{align*}
- Taking \({\operatorname{MCG}}(X)\) here yields homotopy classes of self-homotopy equivalences.
\newpage
\newpage
Relation to Moduli Spaces
-
For topological manifolds: Isotopy classes of homeomorphisms
- In the compact-open topology, two maps are isotopic iff they are in the same component of \(\pi_0 \mathop{\mathrm{Aut}}(X)\).
-
For surfaces: For \(\Sigma\) a genus \(g\) surface, \({\operatorname{MCG}}(S)\) acts on the Teichmuller space \(T(S)\), yielding a SES \begin{align*} 0 \to {\operatorname{MCG}}(\Sigma) \to T(\Sigma) \to {\mathcal{M}}_g \to 0 \end{align*} where the last term is the moduli space of Riemann surfaces homeomorphic to \(X\).
-
\(T(S)\) is the moduli space of complex structures on \(S\), up to the action of homeomorphisms that are isotopic to the identity:
- Points are isomorphism classes of marked Riemann surfaces
- Equivalently the space of hyperbolic metrics
-
Used in the Neilsen-Thurston Classification: for a compact orientable surface, a self-homeomorphism is isotopic to one which is any of:
- Periodic,
- Reducible (preserves some simple closed curves), or
- Pseudo-Anosov (has directions of expansion/contraction)
Picture: \(\mathcal{M}_g\).
\newpage
Examples of MCG
The Plane: Straight Lines
- \({\operatorname{MCG}}_{\mathsf{Top}}({\mathbf{R}}^2) = 1\): for any \(f:{\mathbf{R}}^2\to {\mathbf{R}}^2\), take the straight-line homotopy: \begin{align*} F: {\mathbf{R}}^2 \times I &\to {\mathbf{R}}^2 \\ F(x, t) &= tf(x) + (1-t)x .\end{align*}
Picture: parameterize line between \(x\) and \(f(x)\) and flow along it over time.
\newpage
The Closed Disc: The Alexander Trick
-
\({\operatorname{MCG}}_{\mathsf{Top}}(\mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2) = 1\): for any \(f: \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2\to\mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2\) such that \({ \left.{{f}} \right|_{{{{\partial}}\mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2}} } = \operatorname{id}\), take \begin{align*} F: \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2 \times I &\to \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu^2 \\ F(x, t) &\coloneqq \begin{cases} t f \qty{x\over t} & {\left\lVert {x} \right\rVert} \in [0, t) \\ x & {\left\lVert {x} \right\rVert} \in [1-t, 1] \end{cases} .\end{align*}
-
This is an isotopy from \(f\) to the identity.
-
Interpretation: “cone off” your homeomorphism over time:
-
Note that this won’t work in the smooth category: singularity at origin
-
\newpage
Overview of Big Results
-
The word problem in \({\operatorname{MCG}}(\Sigma_g)\) is solvable
-
Any finite group is \({\operatorname{MCG}}(X)\) for some compact hyperbolic 3-manifold \(X\).
-
For \(g\geq 3\), the center of \({\operatorname{MCG}}(\Sigma_g)\) is trivial and \(H_1({\operatorname{MCG}}(\Sigma_g); {\mathbf{Z}}) = 1\)
- Why care: same as abelianization of the group.
Let \(\Sigma_g\) be compact and oriented with \(\chi(\Sigma_g) < 0\). Then \begin{align*} {\operatorname{MCG}}^+_{\partial}(\Sigma_g) \cong \mathop{\mathrm{Out}}_{\partial}(\pi_1(\Sigma_g)) \cong_{{\mathsf{Grp}}} \pi_0 \mathrm{ho}_{\partial}(\Sigma_g) .\end{align*}
-
For \(g\geq 4\), \(H_2({\operatorname{MCG}}(\Sigma_g); {\mathbf{Z}}) = {\mathbf{Z}}\)
- Why care: used to understand surface bundles
\begin{center} \begin{tikzcd} \Sigma_g \ar[r] & E \ar[d] \\ & B \\ \end{tikzcd} \end{center}
-
Find the classifying space \(B{\operatorname{Diffeo}}\)
-
Understand its homotopy type, since the homotopy LES yields \begin{align*} [S^n, B{\operatorname{Diffeo}}(\Sigma_g)] \cong [S^{n-1}, {\operatorname{Diffeo}}(\Sigma_g)] \end{align*}
-
Theorem (Earle-Ells): For \(g\geq 2\), \({\operatorname{Diffeo}}_0(\Sigma_g)\) is contractible. As a consequence, \({\operatorname{Diffeo}}(\Sigma_g) \twoheadrightarrow{\mathsf{Mod}}(\Sigma_g)\) is a homotopy equivalence, and there is a correspondence: \begin{align*} \left\{{\substack{\text{Oriented $\Sigma_g$ bundles} \\ \text{over } B }}\right\}/\text{\tiny Bundle isomorphism} \iff \left\{{\substack{\text{Monodromy Representations} \\ \rho: \pi_1(B) \to {\operatorname{MCG}}(\Sigma_g)}}\right\}/\text{\tiny Conjugacy} .\end{align*}
\newpage
Dehn Twists
- \({\operatorname{MCG}}(\Sigma_g)\) is generated by finitely many Dehn twists, and always has a finite presentation
Let \(A \coloneqq\left\{{z\in {\mathbf{C}}{~\mathrel{\Big\vert}~}1\leq {\left\lvert {z} \right\rvert} \leq 2}\right\}\), then \({\operatorname{MCG}}(A) \cong {\mathbf{Z}}\), generated by the map \begin{align*} \tau_0: {\mathbf{C}}&\to {\mathbf{C}}\\ z & \mapsto \exp{2\pi i {\left\lvert {z} \right\rvert}}\, z .\end{align*}
See complex function plotter
\newpage
MCG of the Torus
Setup
\begin{align*} {\operatorname{SL}}(n, {\mathbf{k}}) = \left\{{M\in \operatorname{GL}(n, {\mathbf{k}}) \mathrel{\Big|}\operatorname{det}M = 1}\right\} = \ker \operatorname{det}_{{\mathbf{G}}_m} .\end{align*}
\begin{align*} {\mathsf{Sp}}(2n, {\mathbf{k}}) = \left\{{M\in \operatorname{GL}(2n, {\mathbf{k}}) \mathrel{\Big|}M^t\Omega M = \Omega}\right\} \leq {\operatorname{SL}}(2n, {\mathbf{k}}) \end{align*} where \(\Omega\) is a nondegenerate skew-symmetric bilinear form on \({\mathbf{k}}\).
Example: \begin{align*} \Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} .\end{align*}
A bilinear antisymmetric form on middle homology: \begin{align*} \widehat{\iota}: H_1(\Sigma_g; {\mathbf{Z}}) \otimes H_1(\Sigma_g; {\mathbf{Z}}) \to {\mathbf{Z}} .\end{align*}
Note that this is a symplectic pairing.
- There is a natural action of \({\operatorname{MCG}}(\Sigma)\) on \(H_1(\Sigma; {\mathbf{Z}})\), i.e. a homology representation of \({\operatorname{MCG}}(\Sigma)\): \begin{align*} \rho: {\operatorname{MCG}}(\Sigma) &\to \mathop{\mathrm{Aut}}_{{\mathsf{Grp}}}(H_1(\Sigma; {\mathbf{Z}})) \\ f &\mapsto f_* .\end{align*}
\newpage
-
For a surface of finite genus \(g\geq 1\), elements in \(\operatorname{im}\rho\) preserve the algebraic intersection form
-
Thus there is an interesting surjective representation: \begin{align*} 0 \to \mathrm{Tor}(\Sigma_g) \hookrightarrow{\operatorname{MCG}}(\Sigma_g) \twoheadrightarrow{\mathsf{Sp}}(2g; {\mathbf{Z}}) \to 0 .\end{align*}
-
Kernel is the Torelli group, interesting because the symplectic group is well understood, so questions about \({\operatorname{MCG}}\) reduce to questions about \(\operatorname{Tor}\).
The homology representation of the torus induces an isomorphism \begin{align*} \sigma: {\operatorname{MCG}}(\Sigma_2) \xrightarrow{\cong} {\operatorname{SL}}(2, {\mathbf{Z}}) \end{align*}
\newpage
Proof
-
For \(f\) any automorphism, the induced map \(f_*: {\mathbf{Z}}^2 \to {\mathbf{Z}}^2\) is a group automorphism, so we can consider the group morphism \begin{align*} \tilde \sigma: ({\operatorname{Homeo}}(X,X), \circ) &\to (\operatorname{GL}(2, {\mathbf{Z}}), \circ) \\ f &\mapsto f_* .\end{align*}
-
This will descend to the quotient \({\operatorname{MCG}}(X)\) iff \begin{align*}{\operatorname{Homeo}}^0(X, X) \subseteq \ker \tilde \sigma = \tilde\sigma^{-1}(\operatorname{id})\end{align*}
- This is true here, since any map in the identity component is homotopic to the identity, and homotopic maps induce the equal maps on homology.
-
So we have a (now injective) map \begin{align*} \tilde \sigma:{\operatorname{MCG}}(X) &\to \operatorname{GL}(2, {\mathbf{Z}}) \\ f &\mapsto f_* .\end{align*}
\newpage
\(\operatorname{im}(\tilde\sigma )\subseteq {\operatorname{SL}}(2, {\mathbf{Z}})\).
\hfill
- Algebraic intersection numbers in \(\Sigma_2\) correspond to determinants
- \(f\in {\operatorname{Homeo}}^+(X)\) preserve algebraic intersection numbers.
- See section 1.2 of Farb and Margalit
- We can thus freely restrict the codomain to define the map \begin{align*} \sigma:{\operatorname{MCG}}(X) &\to {\operatorname{SL}}(2, {\mathbf{Z}}) \\ f &\mapsto f_* .\end{align*}
\newpage
Surjectivity
\(\sigma\) is surjective.
-
\({\mathbf{R}}^2\) is the universal cover of \(\Sigma_2\), with deck transformation group \({\mathbf{Z}}^2\).
-
Any \(A\in {\operatorname{SL}}(2, {\mathbf{Z}})\) extends to \(\tilde A \in \operatorname{GL}(2, {\mathbf{R}})\), a linear self-homeomorphism of the plane that is orientation-preserving.
\(\tilde A\) is equivariant wrt \({\mathbf{Z}}^2\)
\begin{align*} {\operatorname{SL}}(2, {\mathbf{Z}}) = \left\langle{ S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} , T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} }\right\rangle .\end{align*}
Note that \begin{align*} S^2 = 1, \qquad T^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \end{align*}
So if \(\mathbf{x} = {\left[ {x_1, x_2} \right]} \in {\mathbf{Z}}\oplus {\mathbf{Z}}\) and \(\tilde A\in {\operatorname{SL}}(2, {\mathbf{Z}})\), we have \(\tilde A\mathbf{x} \in {\mathbf{Z}}\oplus {\mathbf{Z}}\), i.e. \(A\) preserves any integer lattice \begin{align*} \Lambda = \left\{{p \mathbf{v}_1 + q\mathbf{v}_2 {~\mathrel{\Big\vert}~}p, q\in {\mathbf{Z}}}\right\} .\end{align*}
- So \(\tilde A\) descends to a well-defined map \begin{align*} \psi_{\tilde A}: \Sigma_2 {\circlearrowleft}= {\mathbf{R}}^2 / {\mathbf{Z}}^2 {\circlearrowleft} \end{align*} which is still a linear self-homeomorphism.
\newpage
-
There is a correspondence \begin{align*} \left\{{\substack{\text{Primitive curves in } \\ \pi_1(\Sigma_2) \cong {\mathbf{Z}}^2}}\right\} \iff \left\{{\substack{\text{Primitive vectors in }{\mathbf{Z}}^2}}\right\} \iff \left\{{\substack{\text{Oriented simple closed} \\\text{curves in } \Sigma_2}}\right\}/\text{\tiny homotopy} ,\end{align*} where an element \(x\) is primitive iff it is not a multiple of another element.
- By changing basis, you can associate a unique primitive vector to \(M\) (all components coprime)
-
By the correspondence, changing a map by a homotopy corresponds to the same primitive vector
-
Thus \(\sigma([\psi_{\tilde A}]) = \tilde A\), and we have surjectivity.
\newpage
Injectivity
\(\sigma\) is injective.
- Useful fact: \(\Sigma_2 \simeq K({\mathbf{Z}}^2, 1)\).
Let \(X\) be a connected CW complex and \(Y\) a \(K(G, 1)\). Then there is a map \begin{align*} \hom_{\mathsf{Grp}}(\pi_1(X; x_0), \pi_1(Y; y_0)) \to \hom_{\mathsf{Top}}((X; x_0), (Y; y_0)) ,\end{align*} i.e. every homomorphism of fundamental groups is induced by a continuous pointed map.
Moreover, the map is unique up to homotopies fixing \(x_0\).
-
Thus there is a correspondence \begin{align*} \left\{{\substack{\text{Homotopy classes of } \\ \text{maps }\Sigma_2 {\circlearrowleft}}}\right\} \iff \left\{{\substack{\text{Group morphisms } {\mathbf{Z}}^2{\circlearrowleft}}}\right\} .\end{align*}
-
Claim: any element \(f\in {\operatorname{MCG}}(\Sigma_2)\) has a representative \(\phi\) which fixes any given basepoint
-
So if \(f\in \ker \sigma\), then \(f\simeq \phi \simeq \operatorname{id}\) are homotopic, so \(\ker \sigma = 1\).