Tags: #homotopy/homological-stability #lie-theory
\({\mathsf{FI}}{\hbox{-}}\)modules (23:45)
Reference: Church-Ellenberg-Farb
-
#open/problems : what are the characters of representations for \(S_n\) acting on certain vector spaces:
- \(H^*({\mathrm{Conf}}_n(X))\)
-
\(H^*({ \mathcal{M}_{g} })\) and its tautological ring \(R^*({ \mathcal{M}_{g} })\)
-
Smallest subrings of Chow closed under pushforward by forgetful/gluing maps between various \({ \mathcal{M}_{g, n} }\).
-
Can push through the cycle class map, unknown these are isomorphic.
-
Can get a surjection \({\mathbf{Q}}[\kappa_i] \to H^*({ \mathcal{M}_{g, n} })\) for degree high enough.
-
-
Main result: dimensions of representation stabilize.
-
Sequence of \(S_n{\hbox{-}}\)reps converted into a single \({\mathsf{FI}}{\hbox{-}}\)module.
-
\({}_{{\mathsf{FI}}}{\mathsf{Mod}} \coloneqq F\in {\mathsf{Fun}}({\mathsf{FI}}, {}_{k}{\mathsf{Mod}} )\).
- Any \({\mathsf{FI}}{\hbox{-}}\)module provides a linear action \({ \operatorname{End} }_{{\mathsf{FI}}}(n) = S_n\).
-
Gradings: functors from ${\mathbb{N}}\to {}_{k}{\mathsf{Mod}} $.