Last modified date: <%+ tp.file.last_modified_date() %>
- Tags:
- Refs:
- Links:
2022 Talbot Talk Outline V2
Preliminaries
-
Where we are:
- Yesterday: classical scissors congruence.
- Today: \(\mathrm{SC}\to {\mathsf{K}}\), i.e. how can we encode/detect scissors congruence in the language of \({\mathsf{K}}\) theory using assemblers.
- Tomorrow: \({\mathsf{K}}\to \mathrm{SC}\): enriching motivic measures, generalizing assemblers to other cut-and-paste problems, towards a topological approach on a generalized Hilbert’s 3rd problem.
-
Conventions:
- \(k\) is a field.
- A variety $X_{/ {k}} $ means a reduced separated scheme of finite type over \(\operatorname{Spec}k\).
- \({\mathcal{V}}_k\) denotes the assembler whose objects are ${\mathsf{Var}}_{/ {k}} $ and whose morphisms are locally closed embeddings
- \({\mathsf{K}}_0({\mathcal{V}}_k)\) is the Grothendieck group of varieties as in previous talks.
- \({\mathbb{L}}= [{\mathbf{A}}^1_{/ {k}} ]\) is the Lefschetz motive, the class of the affine line.
- \(\operatorname{Ann}({\mathbb{L}}) \coloneqq\ker({\mathsf{K}}_0({\mathcal{V}}_k) \xrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}_0({\mathcal{V}}_k) )\). Note that \({\mathbb{L}}\) is a zero divisor \(\iff \operatorname{Ann}({\mathbb{L}}) = 0\).
-
Examples of working with \({\mathbb{L}}\).
- \([{\mathbf{A}}^n] = {\mathbb{L}}^n\)
- \([{\mathbf{P}}^n] = 1 + {\mathbb{L}}+ \cdots + {\mathbb{L}}^n\).
- If \({\mathcal{E}}\to X\) is a rank \(n\) vector bundle (Zariski-locally trivial fibration with fibers \({\mathbf{A}}^n\)) then \([{\mathcal{E}}] = [X]\cdot [{\mathbf{A}}^n] = [X]\cdot {\mathbb{L}}^n\).
Q1: Larsen-Lunts and piecewise isomorphism
-
Quasiprojective varieties \(X,Y\) are piecewise isomorphic if there are stratifications \(X = {\textstyle\coprod}_{i\in I} X_i\) and \(Y = {\textstyle\coprod}_{i\in I} Y_i\) with each \(X_i \cong Y_i\). Write this as \(X\sim Y\).
- Think of this as cut-and-paste equivalence for varieties.
- \(X\sim Y \implies [X] = [Y] \in {\mathsf{K}}_0({\mathcal{V}}_k)\).
-
Question (Larsen-Lunts): Is the converse true? What can generally be said if \([X] = [Y]\)?
- Applications: rationality of motivic zeta functions (motivic versions of Weil conjectures?)
- Answer: No! Borisov and Karzhemanov construct counterexamples for \(k\hookrightarrow{\mathbf{C}}\), Inna shows for a certain class of fields including \(\operatorname{ch}k = 0\).
- Conjecture: this is almost true, and the only obstructions come from \(\operatorname{Ann}({\mathbb{L}})\).
-
Conjecture: for certain varieties, \([X] = [Y] \implies X,Y\) are stably birational:
- \(X \overset{\sim}{\dashrightarrow}Y\) are birational iff there is an isomorphism \(\phi: U { \, \xrightarrow{\sim}\, }V\) of dense open subschemes, so in equations \(\phi\) is given by rational functions. Note that if \(X, Y\) are birational and additionally \(X\setminus U \cong Y\setminus V\), then \(X, Y\) are piecewise isomorphic.
-
\(X, Y\) are stably birational iff \(X\times {\mathbf{P}}^N \overset{\sim}{\dashrightarrow}Y\times {\mathbf{P}}^M\) for some \(N, M\).
- If \(X, Y\) are not birational but are stably birational, then the error of birationality is measured by a power of \({\mathbb{L}}\).
- Birational maps: “almost isomorphisms” which allow not just polynomial but rational functions, and are isomorphisms away from an exceptional set of e.g. poles or a branch locus
- Lots of interesting aspects of birational geometry: \(h^0(X; \Omega_X), \pi_1(X^{\mathrm{an}}), {\operatorname{CH}}_0(X)\) are stable birational invariants, birational classification of e.g. surfaces, MMP, etc…
Q2: When is \(\operatorname{Ann}({\mathbb{L}}) = 0\)? I.e. when (if ever) is \({\mathbb{L}}\) a zero divisor?
- There is a filtration on \({\mathsf{K}}_0({\mathcal{V}}_k)\) where \({\mathsf{gr}\,}_n\) is induced by the image of \begin{align*}\psi_{n}: {\mathbb{Z} { \left[ \scriptstyle {X \mathrel{\Big|}\operatorname{dim} X \leq n} \right] } \over \left\langle{ [X]=[Y]+[X \backslash Y]}\right\rangle} \longrightarrow {\mathsf{K}}_{0}({\mathcal{V}}_k)\end{align*}
- Gromov, Larsen-Lunts ask if \(\psi_n\) is injective, which is equivalent to Q1
-
Answer (Borisov): \({\mathbb{L}}\) generally is a zero divisor, Borisov constructs elements in \(\operatorname{Ann}({\mathbb{L}})\) and seemingly coincidentally constructs elements in \(\ker \psi_n\).
- How and why are \(\operatorname{Ann}({\mathbb{L}})\) and \(\ker \psi_n\) related?
-
\(\operatorname{Ann}({\mathbb{L}})\) interesting for other reasons: Kontsevich’s motivic integral takes values in \({\mathsf{K}}_o({\mathcal{V}}_k)\) but is only well-defined up to powers of \({\mathbb{L}}\), so in \({\mathsf{K}}_0({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\).
- Commutative algebra fact: \(R\to S^{-1}R\) is injective iff \(S\) contains no zero divisors!
This Paper
-
Summary of big questions:
- When is \({\mathsf{K}}({\mathcal{V}}_k) \to {\mathsf{K}}({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\) injective?
- What does equality in \({\mathsf{K}}({\mathcal{V}}_k)\) mean geometrically?
-
Summary of big questions we’re looking at in this paper:
-
When \(\psi_n\) injective, so that we can understand the filtration + grading on \({\mathsf{K}}_0({\mathcal{V}}_k)\)?
- Important for detecting piecewise isomorphisms and for stable birational geometry.
-
When is \(\operatorname{Ann}({\mathbb{L}})\) nonzero?
- Important for motivic measures, rationality questions.
- How are \(\psi_n\) and \(\operatorname{Ann}({\mathbb{L}})\) related?
-
When \(\psi_n\) injective, so that we can understand the filtration + grading on \({\mathsf{K}}_0({\mathcal{V}}_k)\)?
-
What Inna shows:
- Thm A: Constructs a stable (filtered) homotopy type \({\mathsf{K}}({\mathcal{V}})\) where \({\mathsf{gr}\,}_n\) is simpler.
- Thm B: The natural spectral sequence arising from this filtered spectrum characterizes when some \(\ker \psi_n\) is nonzero.
- Thm C: Q1 and Q2 are linked: elements in \(\operatorname{Ann}({\mathbb{L}})\) always yield elements in \(\ker(\psi_n)\)
- Thm D: Partial characterizations of \(\operatorname{Ann}({\mathbb{L}})\).
- Thm E: Identification of \({\mathsf{K}}_0({\mathcal{V}})/\left\langle{{\mathbb{L}}}\right\rangle\) in terms of stable birational geometry.
-
Unknowns:
- What is the associated graded for the filtration induced by \(\psi_n\)?
- What is the kernel of the localization \({\mathsf{K}}_0({\mathcal{V}}_k) \to {\mathsf{K}}_0({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\)?
- Is there a characterization of \(\operatorname{Ann}({\mathbb{L}})\)?
- What fields are convenient?
The Work!
Theorem A: The Splitting
Let
- \({\mathcal{V}}_k\) be the category of varieties over \(k\) and closed inclusions.
- \({\mathcal{V}}^{(n)}_k\) be the \(n\)th filtered subcategory of \({\mathcal{V}}_k\) generated by varieties of dimension \(d\leq n\).
- \(\mathop{\mathrm{Aut}}_k\, k(X)\) be the group of birational automorphisms of the variety \(X\).
- \(B_n\) be the set of birational isomorphism classes of varieties of dimension \(d=n\).
There is a spectrum \({\mathsf{K}}({\mathcal{V}}_k)\) such that \({\mathsf{K}}_0({\mathcal{V}}_k) \coloneqq\pi_0 {\mathsf{K}}({\mathcal{V}}_k)\) coincides with the Grothendieck group of varieties discussed previously, and \({\mathcal{V}}_k^{(n)}\) induces a filtration on the \({\mathsf{K}}({\mathcal{V}}_k)\) such that \begin{align*} {\mathsf{gr}\,}^n = \bigvee_{[X]\in B_n} \Sigma^\infty_+ {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X), \end{align*} with an associated spectral sequence \begin{align*}E_{p, q}^1 = \bigoplus_{[X]\in B_n} \qty{\pi_p \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X) \oplus \pi_p {\mathbb{S}}} \Rightarrow{\mathsf{K}}_p({\mathcal{V}}_k)\end{align*} Note that the \(p=0\) column converges to \({\mathsf{K}}_0({\mathcal{V}}_K)\).
Proof
- Define \({\mathcal{V}}^{(n. n-1)} = {\mathsf{Var}}^{\dim = n}_{/ {k}} \cup\left\{{\emptyset}\right\}\), the varieties of dimension exactly \(n\).
- Thm. 1.8: \({\operatorname{cofib}}\qty{{\mathsf{K}}({\mathcal{V}}^{(n-1)}) \xhookrightarrow{{\mathsf{K}}(\iota_n)} {\mathsf{K}}({\mathcal{V}}^{(n)})} = {\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\).
-
Reduction: STS \({\mathsf{K}}({\mathcal{V}}^{(n)}) \simeq\bigvee_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha)\) where \(\mathop{\mathrm{Aut}}(\alpha) \coloneqq\mathop{\mathrm{Aut}}_k k(X)\) for any \(X\) representing \(\alpha\in B_n\).
- Todo: why STS?
-
Define \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\) to be the full subassembler of irreducible varieties.
- Thm. 1.9: If \(D\leq C\) is a subassembler st every object in \(C\) admits a finite disjoint covering family by objects in \(D\), then \(D\hookrightarrow C\) induces a homotopy equivalence \({\mathsf{K}}(D) \simeq{\mathsf{K}}(C)\).
- Applies here since varieties can be covered by irreducibles.
- So \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \simeq{\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\)
- Reduce further: \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \simeq{\mathsf{K}}(\mathsf{C})\) where \(\mathsf{C} \leq {\mathcal{V}}^{(n, n-1)}\) are only the subvarieties of some \(X_\alpha\) representing some \(\alpha\), as \(\alpha\) ranges over \(B_n\).
-
Decompose: each nonempty variety admits a morphism to exactly one \(X_\alpha\) representing some \(\alpha\) – otherwise, if \(X\mapsto X_\alpha, X_\beta\) then \(X_\alpha\) and \(X_\beta\) are forced to be birational (the morphisms are inclusions of dense opens) implying \(\alpha = \beta\)
- So \(\mathsf{C} = \bigvee_{\alpha\in B_n} \mathsf{C}_{X_\alpha}\) where \(\mathsf{C}_{X_\alpha}\) is the subassembler of only those varieties admitting a (unique) morphism to \(X_\alpha\)
- Now just a computation: \begin{align*} {\mathsf{K}}(\mathsf{C}) \simeq{\mathsf{K}}\qty{\bigvee_{\alpha\in B_n} \mathsf{C}_{X_\alpha}} \simeq\bigoplus_{\alpha\in B_n}{\mathsf{K}}(\mathsf{C}_{X_\alpha}) \cong \bigoplus_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k k(X_\alpha) \cong \bigoplus_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha). \end{align*}
Setup for Thm B
- The cofiber sequence \({\mathsf{K}}({\mathcal{V}}^{q-1}) \to {\mathsf{K}}({\mathcal{V}}^{q}) \to {\mathsf{K}}({\mathcal{V}}^{q, q-1})\) yields a LES with a boundary map \({{\partial}}\):
Lemma 3.2: Representing \({{\partial}}\)
Proof of Lemma 3.2 (useful for understanding \({\mathsf{K}}_1\))
-
Informally, \(X\in {\mathsf{K}}_1({\mathcal{V}}^{(q, q-1) })\) corresponds to data:
-
By ZakB (2015, Prop 3.13), \({{\partial}}[X] = [Z] - [Y] \in {\mathsf{K}}_0({\mathcal{V}}^{(q-1)})\)
-
For \(\phi\), we can represent it with the data:
-
Then \({{\partial}}[\phi] = [Z] - [Y] = [X\setminus V] - [X\setminus U]\) as desired.
Theorem B: The spectral sequence and \(\psi_n\)
There exists nontrivial differentials from column 1 to column 0 in some page of \(E^*\) iff \(\psi_n\) has a nonzer kernel for some \(n\).
More precisely, \(\phi \in \mathop{\mathrm{Aut}}_k k(X)\) extends to a piecewise automorphism \(\iff\) \(d_r[\phi] = 0\) for all \(r\geq 1\).
Todo: why are these related?
Proof
- Notation: write \(A \uplus B\) for disjoint unions to distinguish from taking a coproduct.
- Let \(X \in {\mathsf{Var}}_k^{\dim = q, {\mathrm{irr}}}\), then \(X\) is represented by a class in \(B_q\)
- Let \(\phi: X\overset{\sim}{\dashrightarrow}X\) be defined by \(\phi: U { \, \xrightarrow{\sim}\, }V\) and write \(X = U \uplus (X\setminus U) = V \uplus (X\setminus V)\).
-
\(\implies\): suppose \(\phi\) extends to a piecewise automorphism
- Then \([X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{q-1})\) since \(X\setminus U { \, \xrightarrow{\sim}\, }X\setminus V\) by assumption
- By ???, \({{\partial}}[\phi] = [X\setminus V] - [X\setminus U] = 0\) by the prev step.
- By Lemma 2.1, \(d_r[\phi] = 0\) for all \(r\geq 1\).
- Todo: state Lemma 2.1.
-
\(\impliedby\): suppose \(d_r[\phi] = 0\) for all \(r\geq 1\).
- Since \(d_1[\phi] = 0\) in particular, \([X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{(q, q-1)})\) since ???.
-
An inductive argument allows one to write \(X = U_r \uplus X_r' = V_r \uplus Y_r'\) where
- \(U_r \cong V_r\) are piecewise isomorphic
- \(\dim X_r'\) and \(\dim Y_r' < n-r\).
- \({{\partial}}[\phi] = [Y_r'] - [X_r']\)
- Take \(r=n\) to get \(\dim X_n', \dim Y_n' < 0 \implies X_n' = Y_n' = \emptyset\) and \(X = U_n = V_n\)
-
Then \({{\partial}}[\phi] = [\emptyset] - [\emptyset] = 0\) and \(\phi\) extends
- A general remark on why: \({{\partial}}[\phi]\) measures the failure of \(\phi\) to extend to a piecewise isomorphism:
- \({{\partial}}[\phi] = 0 \implies [X\setminus V] = [X\setminus U]\)
- \(\implies X\setminus V \cong X\setminus U\) are piecewise isomorphic via some map \(\psi\).
- If additionally \(U\cong V\) then \(\phi \uplus \psi\) assemble to a piecewise automorphism of \(X\).
Theorem C
Let \(k\) be a convenient field, e.g. \(\operatorname{ch}k = 0\). Then \({\mathbb{L}}\) is a zero divisor in \({\mathsf{K}}_0({\mathcal{V}}_k)\) \(\implies \psi_n\) is not injective for some \(n\).
Proof
- Strategy: contrapositive. Suppose \(\ker \psi_n = 0\) for all \(n\). Write \({\mathcal{V}}\coloneqq{\mathcal{V}}_k\).
-
There is a cofiber sequence \({\mathsf{K}}({\mathcal{V}}) \xrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}({\mathcal{V}}) \xrightarrow{\ell} {\mathsf{K}}({\mathcal{V}}/{\mathbb{L}})\).
- Todo: what is \({\mathcal{V}}/{\mathbb{L}}\)?
- Take the LES to identify \(\ker(\cdot {\mathbb{L}})\) with \(\operatorname{coker}(\ell)\):
-
Reduce to analyzing \(\operatorname{coker}(E_{1, q}^\infty \to \tilde E_{1, q}^\infty )\)
- Todo: what is \(\tilde E_{1, q}^\infty\)?
- Lemma 5.4 shows \(\tilde E_{1, q}^\infty\) is a quotient of \(\qty{\bigoplus_{\beta\in B_n} \pi_1 \tilde C_\beta} \bigoplus_{B_n\setminus\ell(B_n)} C_2\)
- Cor. 5.5 shows \(E_{1, n}^1 \to \tilde E_{1, n}^1\) is surjective.
- Suppose all \(\alpha\) extend, then all differentials from column 1 to column 0 are zero.
- The map \(E^r \to \tilde E^r\) is surjective for all \(r\) on all components that survive to \(E^\infty\).
- All differentials out of these componenets are zero, so \(E^\infty \twoheadrightarrow\tilde E^\infty\).
- Then \({\mathsf{K}}_1({\mathcal{V}}) \xrightarrow[]{\ell} { \mathrel{\mkern-16mu}\rightarrow }\, {\mathsf{K}}_1({\mathcal{V}}/{\mathbb{L}})\), making \(0 = \operatorname{coker}(\ell) = \ker(\cdot {\mathbb{L}})\) so \({\mathbb{L}}\) is not a zero divisor.prove
Theorem D
Let \(k\) be a convenient field, then if \(\chi \in \operatorname{Ann}({\mathbb{L}})\) then \(\chi = [X] - [Y]\) where \([X\times {\mathbf{A}}^1] = [Y\times {\mathbf{A}}^1]\) but these are not piecewise isomorphic. Moreover, ??? is in \(\ker(\psi_n)\) ???
Proof
- Let \(\chi \in \ker(\cdot {\mathbb{L}})\) and pullback in the LES to \(x \in {\mathsf{K}}({\mathcal{V}}^{(n)}/{\mathbb{L}})\) where \(n\) is minimal among filtration degrees:
- Write \({{\partial}}[x] = [X] - [Y]\) with \(X,Y\) of minimal dimension.
- Note \([X\times {\mathbf{A}}^1] = [Y\times {\mathbf{A}}^1] \implies \dim X + 1 = \dim Y + 1 \implies \dim X = \dim Y = d\) (See LS10 Cor 5).
- Claim: \(d < n-1\).
-
Done if this claim is true: proceed by showing \(X\) and \(Y\) are not piecewise isomorphic by showing \(\ker \psi_n\) is nontrivial by a diagram chase.
-
Claim: If \({\mathbb{L}}([X] - [Y]) \in \ker ?\) then we can produce an element in \(\ker \psi_n\).
-
Diagram chase:
- \([X] - [Y] \not \in \operatorname{im}({{\partial}})\) by the minimality of \(n\) for \(x\), noting \({{\partial}}[x] = [X] - [Y]\).
- By exactness \(\operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\), so \({\mathbb{L}}([X] - [Y]) \neq 0\).
- By choice of \(n\), \(i_*({\mathbb{L}}([X] - [Y])) \in \operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\) in bottom row, so \({\mathbb{L}}([X] - [Y]) = 0\) in bottom-right.
- Commutativity forces \({\mathbb{L}}([X] - [Y]) \in \ker i_*^{n-1}\).
- Thus \({\mathbb{L}}([X] - [Y])\) corresponds to an element in \(\ker \psi_n\). (???)
-
Diagram chase:
-
Claim: If \({\mathbb{L}}([X] - [Y]) \in \ker ?\) then we can produce an element in \(\ker \psi_n\).
Theorem E
There is an isomorphism \begin{align*} {\mathsf{K}}_0({\mathcal{V}}_{\mathbf{C}})/\left\langle{{\mathbb{L}}}\right\rangle { \, \xrightarrow{\sim}\, }{\mathbf{Z}}[\mathsf{SB}_{\mathbf{C}}] \qquad \in {}_{{\mathbf{Z}}}{\mathsf{Mod}} \end{align*}
Proof: omitted.
Remark: so \([X] \equiv [B] \operatorname{mod}{\mathbb{L}}\implies\) \(X\) and \(Y\) are stably birational?