2022 Talbot Talk Outline V2


Last modified date: <%+ tp.file.last_modified_date() %>



2022 Talbot Talk Outline V2

Preliminaries

  • Where we are:
    • Yesterday: classical scissors congruence.
    • Today: \(\mathrm{SC}\to {\mathsf{K}}\), i.e. how can we encode/detect scissors congruence in the language of \({\mathsf{K}}\) theory using assemblers.
    • Tomorrow: \({\mathsf{K}}\to \mathrm{SC}\): enriching motivic measures, generalizing assemblers to other cut-and-paste problems, towards a topological approach on a generalized Hilbert’s 3rd problem.
  • Conventions:
    • \(k\) is a field.
    • A variety $X_{/ {k}} $ means a reduced separated scheme of finite type over \(\operatorname{Spec}k\).
    • \({\mathcal{V}}_k\) denotes the assembler whose objects are ${\mathsf{Var}}_{/ {k}} $ and whose morphisms are locally closed embeddings
    • \({\mathsf{K}}_0({\mathcal{V}}_k)\) is the Grothendieck group of varieties as in previous talks.
    • \({\mathbb{L}}= [{\mathbf{A}}^1_{/ {k}} ]\) is the Lefschetz motive, the class of the affine line.
    • \(\operatorname{Ann}({\mathbb{L}}) \coloneqq\ker({\mathsf{K}}_0({\mathcal{V}}_k) \xrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}_0({\mathcal{V}}_k) )\). Note that \({\mathbb{L}}\) is a zero divisor \(\iff \operatorname{Ann}({\mathbb{L}}) = 0\).
  • Examples of working with \({\mathbb{L}}\).
    • \([{\mathbf{A}}^n] = {\mathbb{L}}^n\)
    • \([{\mathbf{P}}^n] = 1 + {\mathbb{L}}+ \cdots + {\mathbb{L}}^n\).
    • If \({\mathcal{E}}\to X\) is a rank \(n\) vector bundle (Zariski-locally trivial fibration with fibers \({\mathbf{A}}^n\)) then \([{\mathcal{E}}] = [X]\cdot [{\mathbf{A}}^n] = [X]\cdot {\mathbb{L}}^n\).

Q1: Larsen-Lunts and piecewise isomorphism

  • Quasiprojective varieties \(X,Y\) are piecewise isomorphic if there are stratifications \(X = {\textstyle\coprod}_{i\in I} X_i\) and \(Y = {\textstyle\coprod}_{i\in I} Y_i\) with each \(X_i \cong Y_i\). Write this as \(X\sim Y\).
    • Think of this as cut-and-paste equivalence for varieties.
  • \(X\sim Y \implies [X] = [Y] \in {\mathsf{K}}_0({\mathcal{V}}_k)\).
  • Question (Larsen-Lunts): Is the converse true? What can generally be said if \([X] = [Y]\)?
    • Applications: rationality of motivic zeta functions (motivic versions of Weil conjectures?)
  • Answer: No! Borisov and Karzhemanov construct counterexamples for \(k\hookrightarrow{\mathbf{C}}\), Inna shows for a certain class of fields including \(\operatorname{ch}k = 0\).
  • Conjecture: this is almost true, and the only obstructions come from \(\operatorname{Ann}({\mathbb{L}})\).
  • Conjecture: for certain varieties, \([X] = [Y] \implies X,Y\) are stably birational:
    • \(X \overset{\sim}{\dashrightarrow}Y\) are birational iff there is an isomorphism \(\phi: U { \, \xrightarrow{\sim}\, }V\) of dense open subschemes, so in equations \(\phi\) is given by rational functions. Note that if \(X, Y\) are birational and additionally \(X\setminus U \cong Y\setminus V\), then \(X, Y\) are piecewise isomorphic.
    • \(X, Y\) are stably birational iff \(X\times {\mathbf{P}}^N \overset{\sim}{\dashrightarrow}Y\times {\mathbf{P}}^M\) for some \(N, M\).
      • If \(X, Y\) are not birational but are stably birational, then the error of birationality is measured by a power of \({\mathbb{L}}\).
    • Birational maps: “almost isomorphisms” which allow not just polynomial but rational functions, and are isomorphisms away from an exceptional set of e.g. poles or a branch locus
    • Lots of interesting aspects of birational geometry: \(h^0(X; \Omega_X), \pi_1(X^{\mathrm{an}}), {\operatorname{CH}}_0(X)\) are stable birational invariants, birational classification of e.g. surfaces, MMP, etc…

Q2: When is \(\operatorname{Ann}({\mathbb{L}}) = 0\)? I.e. when (if ever) is \({\mathbb{L}}\) a zero divisor?

  • There is a filtration on \({\mathsf{K}}_0({\mathcal{V}}_k)\) where \({\mathsf{gr}\,}_n\) is induced by the image of \begin{align*}\psi_{n}: {\mathbb{Z} { \left[ \scriptstyle {X \mathrel{\Big|}\operatorname{dim} X \leq n} \right] } \over \left\langle{ [X]=[Y]+[X \backslash Y]}\right\rangle} \longrightarrow {\mathsf{K}}_{0}({\mathcal{V}}_k)\end{align*}
  • Gromov, Larsen-Lunts ask if \(\psi_n\) is injective, which is equivalent to Q1
  • Answer (Borisov): \({\mathbb{L}}\) generally is a zero divisor, Borisov constructs elements in \(\operatorname{Ann}({\mathbb{L}})\) and seemingly coincidentally constructs elements in \(\ker \psi_n\).
    • How and why are \(\operatorname{Ann}({\mathbb{L}})\) and \(\ker \psi_n\) related?
  • \(\operatorname{Ann}({\mathbb{L}})\) interesting for other reasons: Kontsevich’s motivic integral takes values in \({\mathsf{K}}_o({\mathcal{V}}_k)\) but is only well-defined up to powers of \({\mathbb{L}}\), so in \({\mathsf{K}}_0({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\).
    • Commutative algebra fact: \(R\to S^{-1}R\) is injective iff \(S\) contains no zero divisors!

This Paper

  • Summary of big questions:
    • When is \({\mathsf{K}}({\mathcal{V}}_k) \to {\mathsf{K}}({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\) injective?
    • What does equality in \({\mathsf{K}}({\mathcal{V}}_k)\) mean geometrically?
  • Summary of big questions we’re looking at in this paper:
    • When \(\psi_n\) injective, so that we can understand the filtration + grading on \({\mathsf{K}}_0({\mathcal{V}}_k)\)?
      • Important for detecting piecewise isomorphisms and for stable birational geometry.
    • When is \(\operatorname{Ann}({\mathbb{L}})\) nonzero?
      • Important for motivic measures, rationality questions.
    • How are \(\psi_n\) and \(\operatorname{Ann}({\mathbb{L}})\) related?
  • What Inna shows:
    • Thm A: Constructs a stable (filtered) homotopy type \({\mathsf{K}}({\mathcal{V}})\) where \({\mathsf{gr}\,}_n\) is simpler.
    • Thm B: The natural spectral sequence arising from this filtered spectrum characterizes when some \(\ker \psi_n\) is nonzero.
    • Thm C: Q1 and Q2 are linked: elements in \(\operatorname{Ann}({\mathbb{L}})\) always yield elements in \(\ker(\psi_n)\)
    • Thm D: Partial characterizations of \(\operatorname{Ann}({\mathbb{L}})\).
    • Thm E: Identification of \({\mathsf{K}}_0({\mathcal{V}})/\left\langle{{\mathbb{L}}}\right\rangle\) in terms of stable birational geometry.
  • Unknowns:
    • What is the associated graded for the filtration induced by \(\psi_n\)?
    • What is the kernel of the localization \({\mathsf{K}}_0({\mathcal{V}}_k) \to {\mathsf{K}}_0({\mathcal{V}}_k){ \left[ { \scriptstyle \frac{1}{{\mathbb{L}}} } \right] }\)?
    • Is there a characterization of \(\operatorname{Ann}({\mathbb{L}})\)?
    • What fields are convenient?

The Work!

Theorem A: The Splitting

Let

  • \({\mathcal{V}}_k\) be the category of varieties over \(k\) and closed inclusions.
  • \({\mathcal{V}}^{(n)}_k\) be the \(n\)th filtered subcategory of \({\mathcal{V}}_k\) generated by varieties of dimension \(d\leq n\).
  • \(\mathop{\mathrm{Aut}}_k\, k(X)\) be the group of birational automorphisms of the variety \(X\).
  • \(B_n\) be the set of birational isomorphism classes of varieties of dimension \(d=n\).

There is a spectrum \({\mathsf{K}}({\mathcal{V}}_k)\) such that \({\mathsf{K}}_0({\mathcal{V}}_k) \coloneqq\pi_0 {\mathsf{K}}({\mathcal{V}}_k)\) coincides with the Grothendieck group of varieties discussed previously, and \({\mathcal{V}}_k^{(n)}\) induces a filtration on the \({\mathsf{K}}({\mathcal{V}}_k)\) such that \begin{align*} {\mathsf{gr}\,}^n = \bigvee_{[X]\in B_n} \Sigma^\infty_+ {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X), \end{align*} with an associated spectral sequence \begin{align*}E_{p, q}^1 = \bigoplus_{[X]\in B_n} \qty{\pi_p \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k\, k(X) \oplus \pi_p {\mathbb{S}}} \Rightarrow{\mathsf{K}}_p({\mathcal{V}}_k)\end{align*} Note that the \(p=0\) column converges to \({\mathsf{K}}_0({\mathcal{V}}_K)\).

Proof

  • Define \({\mathcal{V}}^{(n. n-1)} = {\mathsf{Var}}^{\dim = n}_{/ {k}} \cup\left\{{\emptyset}\right\}\), the varieties of dimension exactly \(n\).
  • Thm. 1.8: \({\operatorname{cofib}}\qty{{\mathsf{K}}({\mathcal{V}}^{(n-1)}) \xhookrightarrow{{\mathsf{K}}(\iota_n)} {\mathsf{K}}({\mathcal{V}}^{(n)})} = {\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\).
  • Reduction: STS \({\mathsf{K}}({\mathcal{V}}^{(n)}) \simeq\bigvee_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha)\) where \(\mathop{\mathrm{Aut}}(\alpha) \coloneqq\mathop{\mathrm{Aut}}_k k(X)\) for any \(X\) representing \(\alpha\in B_n\).
    • Todo: why STS?
  • Define \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\) to be the full subassembler of irreducible varieties.
    • Thm. 1.9: If \(D\leq C\) is a subassembler st every object in \(C\) admits a finite disjoint covering family by objects in \(D\), then \(D\hookrightarrow C\) induces a homotopy equivalence \({\mathsf{K}}(D) \simeq{\mathsf{K}}(C)\).
    • Applies here since varieties can be covered by irreducibles.
    • So \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \simeq{\mathsf{K}}({\mathcal{V}}^{(n, n-1)})\)
  • Reduce further: \(\tilde {\mathsf{K}}({\mathcal{V}}^{(n, n-1)}) \simeq{\mathsf{K}}(\mathsf{C})\) where \(\mathsf{C} \leq {\mathcal{V}}^{(n, n-1)}\) are only the subvarieties of some \(X_\alpha\) representing some \(\alpha\), as \(\alpha\) ranges over \(B_n\).
  • Decompose: each nonempty variety admits a morphism to exactly one \(X_\alpha\) representing some \(\alpha\) – otherwise, if \(X\mapsto X_\alpha, X_\beta\) then \(X_\alpha\) and \(X_\beta\) are forced to be birational (the morphisms are inclusions of dense opens) implying \(\alpha = \beta\)
    • So \(\mathsf{C} = \bigvee_{\alpha\in B_n} \mathsf{C}_{X_\alpha}\) where \(\mathsf{C}_{X_\alpha}\) is the subassembler of only those varieties admitting a (unique) morphism to \(X_\alpha\)
  • Now just a computation: \begin{align*} {\mathsf{K}}(\mathsf{C}) \simeq{\mathsf{K}}\qty{\bigvee_{\alpha\in B_n} \mathsf{C}_{X_\alpha}} \simeq\bigoplus_{\alpha\in B_n}{\mathsf{K}}(\mathsf{C}_{X_\alpha}) \cong \bigoplus_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}_k k(X_\alpha) \cong \bigoplus_{\alpha\in B_n} \Sigma_+^\infty {\mathbf{B}}\mathop{\mathrm{Aut}}(\alpha). \end{align*}

Setup for Thm B

  • The cofiber sequence \({\mathsf{K}}({\mathcal{V}}^{q-1}) \to {\mathsf{K}}({\mathcal{V}}^{q}) \to {\mathsf{K}}({\mathcal{V}}^{q, q-1})\) yields a LES with a boundary map \({{\partial}}\): attachments/Pasted%20image%2020220612045043.png
Lemma 3.2: Representing \({{\partial}}\)
Proof of Lemma 3.2 (useful for understanding \({\mathsf{K}}_1\))
  • Informally, \(X\in {\mathsf{K}}_1({\mathcal{V}}^{(q, q-1) })\) corresponds to data: attachments/Pasted%20image%2020220612045307.png

  • By ZakB (2015, Prop 3.13), \({{\partial}}[X] = [Z] - [Y] \in {\mathsf{K}}_0({\mathcal{V}}^{(q-1)})\)

  • For \(\phi\), we can represent it with the data: attachments/Pasted%20image%2020220612045448.png

  • Then \({{\partial}}[\phi] = [Z] - [Y] = [X\setminus V] - [X\setminus U]\) as desired.

    attachments/Pasted%20image%2020220612045700.png

Theorem B: The spectral sequence and \(\psi_n\)

There exists nontrivial differentials from column 1 to column 0 in some page of \(E^*\) iff \(\psi_n\) has a nonzer kernel for some \(n\).

More precisely, \(\phi \in \mathop{\mathrm{Aut}}_k k(X)\) extends to a piecewise automorphism \(\iff\) \(d_r[\phi] = 0\) for all \(r\geq 1\).

Todo: why are these related?

Proof

  • Notation: write \(A \uplus B\) for disjoint unions to distinguish from taking a coproduct.
  • Let \(X \in {\mathsf{Var}}_k^{\dim = q, {\mathrm{irr}}}\), then \(X\) is represented by a class in \(B_q\)
  • Let \(\phi: X\overset{\sim}{\dashrightarrow}X\) be defined by \(\phi: U { \, \xrightarrow{\sim}\, }V\) and write \(X = U \uplus (X\setminus U) = V \uplus (X\setminus V)\).
  • \(\implies\): suppose \(\phi\) extends to a piecewise automorphism
    • Then \([X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{q-1})\) since \(X\setminus U { \, \xrightarrow{\sim}\, }X\setminus V\) by assumption
    • By ???, \({{\partial}}[\phi] = [X\setminus V] - [X\setminus U] = 0\) by the prev step.
    • By Lemma 2.1, \(d_r[\phi] = 0\) for all \(r\geq 1\).
    • Todo: state Lemma 2.1.
  • \(\impliedby\): suppose \(d_r[\phi] = 0\) for all \(r\geq 1\).
    • Since \(d_1[\phi] = 0\) in particular, \([X\setminus U] = [X\setminus V]\in {\mathsf{K}}_0({\mathcal{V}}^{(q, q-1)})\) since ???.
    • An inductive argument allows one to write \(X = U_r \uplus X_r' = V_r \uplus Y_r'\) where
      • \(U_r \cong V_r\) are piecewise isomorphic
      • \(\dim X_r'\) and \(\dim Y_r' < n-r\).
      • \({{\partial}}[\phi] = [Y_r'] - [X_r']\)
    • Take \(r=n\) to get \(\dim X_n', \dim Y_n' < 0 \implies X_n' = Y_n' = \emptyset\) and \(X = U_n = V_n\)
    • Then \({{\partial}}[\phi] = [\emptyset] - [\emptyset] = 0\) and \(\phi\) extends
      • A general remark on why: \({{\partial}}[\phi]\) measures the failure of \(\phi\) to extend to a piecewise isomorphism:
      • \({{\partial}}[\phi] = 0 \implies [X\setminus V] = [X\setminus U]\)
      • \(\implies X\setminus V \cong X\setminus U\) are piecewise isomorphic via some map \(\psi\).
      • If additionally \(U\cong V\) then \(\phi \uplus \psi\) assemble to a piecewise automorphism of \(X\).

Theorem C

Let \(k\) be a convenient field, e.g. \(\operatorname{ch}k = 0\). Then \({\mathbb{L}}\) is a zero divisor in \({\mathsf{K}}_0({\mathcal{V}}_k)\) \(\implies \psi_n\) is not injective for some \(n\).

Proof

  • Strategy: contrapositive. Suppose \(\ker \psi_n = 0\) for all \(n\). Write \({\mathcal{V}}\coloneqq{\mathcal{V}}_k\).
  • There is a cofiber sequence \({\mathsf{K}}({\mathcal{V}}) \xrightarrow{\cdot {\mathbb{L}}} {\mathsf{K}}({\mathcal{V}}) \xrightarrow{\ell} {\mathsf{K}}({\mathcal{V}}/{\mathbb{L}})\).
    • Todo: what is \({\mathcal{V}}/{\mathbb{L}}\)?
  • Take the LES to identify \(\ker(\cdot {\mathbb{L}})\) with \(\operatorname{coker}(\ell)\): attachments/Pasted%20image%2020220612041242.png
  • Reduce to analyzing \(\operatorname{coker}(E_{1, q}^\infty \to \tilde E_{1, q}^\infty )\)
    • Todo: what is \(\tilde E_{1, q}^\infty\)?
  • Lemma 5.4 shows \(\tilde E_{1, q}^\infty\) is a quotient of \(\qty{\bigoplus_{\beta\in B_n} \pi_1 \tilde C_\beta} \bigoplus_{B_n\setminus\ell(B_n)} C_2\)
  • Cor. 5.5 shows \(E_{1, n}^1 \to \tilde E_{1, n}^1\) is surjective.
  • Suppose all \(\alpha\) extend, then all differentials from column 1 to column 0 are zero.
  • The map \(E^r \to \tilde E^r\) is surjective for all \(r\) on all components that survive to \(E^\infty\).
  • All differentials out of these componenets are zero, so \(E^\infty \twoheadrightarrow\tilde E^\infty\).
  • Then \({\mathsf{K}}_1({\mathcal{V}}) \xrightarrow[]{\ell} { \mathrel{\mkern-16mu}\rightarrow }\, {\mathsf{K}}_1({\mathcal{V}}/{\mathbb{L}})\), making \(0 = \operatorname{coker}(\ell) = \ker(\cdot {\mathbb{L}})\) so \({\mathbb{L}}\) is not a zero divisor.prove

Theorem D

Let \(k\) be a convenient field, then if \(\chi \in \operatorname{Ann}({\mathbb{L}})\) then \(\chi = [X] - [Y]\) where \([X\times {\mathbf{A}}^1] = [Y\times {\mathbf{A}}^1]\) but these are not piecewise isomorphic. Moreover, ??? is in \(\ker(\psi_n)\) ???

Proof

  • Let \(\chi \in \ker(\cdot {\mathbb{L}})\) and pullback in the LES to \(x \in {\mathsf{K}}({\mathcal{V}}^{(n)}/{\mathbb{L}})\) where \(n\) is minimal among filtration degrees: attachments/Pasted%20image%2020220612042212.png
  • Write \({{\partial}}[x] = [X] - [Y]\) with \(X,Y\) of minimal dimension.
  • Note \([X\times {\mathbf{A}}^1] = [Y\times {\mathbf{A}}^1] \implies \dim X + 1 = \dim Y + 1 \implies \dim X = \dim Y = d\) (See LS10 Cor 5).
  • Claim: \(d < n-1\).
  • Done if this claim is true: proceed by showing \(X\) and \(Y\) are not piecewise isomorphic by showing \(\ker \psi_n\) is nontrivial by a diagram chase.
    • Claim: If \({\mathbb{L}}([X] - [Y]) \in \ker ?\) then we can produce an element in \(\ker \psi_n\).
      • Diagram chase: attachments/Pasted%20image%2020220612042531.png
        • \([X] - [Y] \not \in \operatorname{im}({{\partial}})\) by the minimality of \(n\) for \(x\), noting \({{\partial}}[x] = [X] - [Y]\).
        • By exactness \(\operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\), so \({\mathbb{L}}([X] - [Y]) \neq 0\).
        • By choice of \(n\), \(i_*({\mathbb{L}}([X] - [Y])) \in \operatorname{im}{{\partial}}= \ker(\cdot {\mathbb{L}})\) in bottom row, so \({\mathbb{L}}([X] - [Y]) = 0\) in bottom-right.
        • Commutativity forces \({\mathbb{L}}([X] - [Y]) \in \ker i_*^{n-1}\).
      • Thus \({\mathbb{L}}([X] - [Y])\) corresponds to an element in \(\ker \psi_n\). (???)

Theorem E

There is an isomorphism \begin{align*} {\mathsf{K}}_0({\mathcal{V}}_{\mathbf{C}})/\left\langle{{\mathbb{L}}}\right\rangle { \, \xrightarrow{\sim}\, }{\mathbf{Z}}[\mathsf{SB}_{\mathbf{C}}] \qquad \in {}_{{\mathbf{Z}}}{\mathsf{Mod}} \end{align*}

Proof: omitted.

Remark: so \([X] \equiv [B] \operatorname{mod}{\mathbb{L}}\implies\) \(X\) and \(Y\) are stably birational?

Links to this page
#todo/untagged #todo/add-references #todo/create-links