Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - Cohen overview of Floer homotopy types - ✨ Crash course in homotopy with some words about infty-categories. - Links: - #todo/create-links
Homotopy talk
Linked topics to look at:
Results
- Furuta: \({\operatorname{Pin}}_2{\hbox{-}}\)equivariant Seiberg-Witten Floer \({\mathsf{K}}\) theory used to prove the Furuta 10 8 conjecture. See monopole homotopy type.
-
Kneser 1928: does every topological manifold admit a PL structure (triangulation)? Resolved by Manolescu using the equivariant Seiberg-Witten homotopy type.
-
Motivations:
- Singular homology:
Classical
-
Definition of \(\pi_k X\)
-
Suspension, smash product, based loop space
-
Stabilization and Freudenthal suspension
-
Fibrant and cofibrant resolution, weakly equivalent replacement by CW complexes
-
Homotopy equivalence vs weak equivalence
-
Big theorems:
- Freudenthal suspension
- Whitehead
- Hurewicz
Compare to chain complexes:
Monoidal structure:
Homotopy groups:
Stable homotopy
- (Stable) homotopy types
- SHC as an infinity category, triangulated, monoidal
- Various path/loop spaces: \({\mathcal{L}}M, {\mathcal{P}}M, {\Omega}M, \Sigma M, A\wedge M\)
- The \({\Sigma}^\infty{\hbox{-}}{\Omega}^\infty\) adjunction, delooping
- Definition of a suspension and omega spectra,
- Pro spectra
-
Homotopy groups of spectra
- Colimits
- Wedges of spectra (as sums)
-
Generalized cohomology theories: cobordism and \({\mathsf{K}}\)
- The Eilenberg-Maclane spectra \(HR\)
- Recovering homology as \(H^*(X; {\mathbf{Z}}) = \pi_* \qty{ {\Sigma}^\infty X \wedge{H{\mathbf{Z}}}}\)???
- Fibres/cofibres and their sequences
- Serre Sseq vs AdSseq
-
✨Ring spectra, \({\mathbb{E}}_\infty\) rings, and \(A_\infty\) structures
- As monoid and commutative monoid objects in SHC
- Can take THH of a ring spectrum to define invariants.
- Allow cohomology operations generalizing the Steenrod operations.
- R-module spectra
-
✨Morava K theory
- Why care: they’re like “fields”; every \(K(n){\hbox{-}}\)module \(M\) is free, i.e. \(M\cong \bigvee_i { \Sigma^{\scriptstyle[k_i]} K(n) }\) (a wedge of shifts of the original).
- The Pontryagin-Thom construction
- \({\operatorname{MSO}}\)
- Connective spectra
-
Examples of usefulness:
- Model categories, weak equivalence, Quillen equivalence
Equivariant homotopy
- Define equivariance
- Borel construction
- \(G{\hbox{-}}\)equivariant singular homology.
- Homotopy orbits and fixed points
Infty Cats
-
Groupoids, \(\Pi_1 X\)
-
Simplicial sets
- Realization/singular simplex adjunction
- Kan complexes
- The actual definition of an infty category;
- Classifying categories \({\mathbf{B}}\mathsf{C}\), every groupoid is equivalent to \({\textstyle\coprod}_{\alpha \in J}{{\mathbf{B}}G}_\alpha\) for some groups \(G_\alpha\).
- Colimits, pullbacks
- Geometric realization/nerve adjunction
- \(\mathop{\mathrm{Maps}}_{\mathsf{C}} = \colim(\Delta^0 \to \mathsf{C}{ {}^{ \scriptscriptstyle\times^{2} } } \leftarrow[\Delta^1, \mathsf{C}])\)
- Pro and Ind objects
- Symmetric monoidal categories
- Weak equivalences
- Contractible choices:
- Limits and colimits
Floer
- The Arnold conjecture
- Topological categories
- Flow categories
- The action functional on loop spaces \(f\mapsto \int_{{\mathbb{B}}^2} f^*\omega\) mapping \({\mathcal{L}}M\to {\mathbf{R}}\).
- Paths as cylinders: \([{\mathbf{R}}, {\mathcal{L}}M] \cong [{\mathbf{R}}\times S^1, M]\).
- The Floer homotopy theorem: