Untitled

Last modified date: <%+ tp.file.last_modified_date() %>


Homotopy talk

Linked topics to look at:

Results

  • Furuta: \({\operatorname{Pin}}_2{\hbox{-}}\)equivariant Seiberg-Witten Floer \({\mathsf{K}}\) theory used to prove the Furuta 10 8 conjecture. See monopole homotopy type.
  • Kneser 1928: does every topological manifold admit a PL structure (triangulation)? Resolved by Manolescu using the equivariant Seiberg-Witten homotopy type.
    • attachments/Pasted%20image%2020220505152620.png
    • Motivations:
      • attachments/Pasted%20image%2020220505192100.png
      • Singular homology: attachments/Pasted%20image%2020220505195053.png

Classical

  • Definition of \(\pi_k X\)

  • Suspension, smash product, based loop space

  • Stabilization and Freudenthal suspension

  • Fibrant and cofibrant resolution, weakly equivalent replacement by CW complexes

  • Homotopy equivalence vs weak equivalence

  • Big theorems:

    • Freudenthal suspension
    • Whitehead
    • Hurewicz
    • attachments/Pasted%20image%2020220505200951.png

attachments/Pasted%20image%2020220505193605.png attachments/Pasted%20image%2020220505193612.png attachments/Pasted%20image%2020220505193621.png attachments/Pasted%20image%2020220505193627.png

Compare to chain complexes: attachments/Pasted%20image%2020220505194325.png attachments/Pasted%20image%2020220505194230.png

Monoidal structure: attachments/Pasted%20image%2020220505195649.png

Homotopy groups: attachments/Pasted%20image%2020220505195737.png attachments/Pasted%20image%2020220505195754.png

Stable homotopy

  • (Stable) homotopy types
  • SHC as an infinity category, triangulated, monoidal
  • Various path/loop spaces: \({\mathcal{L}}M, {\mathcal{P}}M, {\Omega}M, \Sigma M, A\wedge M\)
  • The \({\Sigma}^\infty{\hbox{-}}{\Omega}^\infty\) adjunction, delooping
  • Definition of a suspension and omega spectra,
  • Pro spectra
  • Homotopy groups of spectra
    • Colimits
  • Wedges of spectra (as sums)
  • Generalized cohomology theories: cobordism and \({\mathsf{K}}\)
    • The Eilenberg-Maclane spectra \(HR\)
    • Recovering homology as \(H^*(X; {\mathbf{Z}}) = \pi_* \qty{ {\Sigma}^\infty X \wedge{H{\mathbf{Z}}}}\)???
  • Fibres/cofibres and their sequences
  • Serre Sseq vs AdSseq
  • ✨Ring spectra, \({\mathbb{E}}_\infty\) rings, and \(A_\infty\) structures
    • As monoid and commutative monoid objects in SHC
    • Can take THH of a ring spectrum to define invariants.
    • Allow cohomology operations generalizing the Steenrod operations.
    • R-module spectra
    • attachments/Pasted%20image%2020220505174330.png
  • ✨Morava K theory
    • Why care: they’re like “fields”; every \(K(n){\hbox{-}}\)module \(M\) is free, i.e. \(M\cong \bigvee_i { \Sigma^{\scriptstyle[k_i]} K(n) }\) (a wedge of shifts of the original).
  • The Pontryagin-Thom construction
  • \({\operatorname{MSO}}\)
  • Connective spectra
  • Examples of usefulness:
    • attachments/Pasted%20image%2020220505155658.png
  • Model categories, weak equivalence, Quillen equivalence

Equivariant homotopy

  • Define equivariance
  • Borel construction
  • \(G{\hbox{-}}\)equivariant singular homology.
  • Homotopy orbits and fixed points

Infty Cats

  • Groupoids, \(\Pi_1 X\)
    • attachments/Pasted%20image%2020220505174701.png
  • Simplicial sets
    • Realization/singular simplex adjunction
    • Kan complexes
    • The actual definition of an infty category; attachments/Pasted%20image%2020220505175008.png attachments/Pasted%20image%2020220505175041.png attachments/Pasted%20image%2020220505175102.png attachments/Pasted%20image%2020220505175211.png attachments/Pasted%20image%2020220505175218.png attachments/Pasted%20image%2020220505175334.png attachments/Pasted%20image%2020220505175227.png attachments/Pasted%20image%2020220505175347.png
  • Classifying categories \({\mathbf{B}}\mathsf{C}\), every groupoid is equivalent to \({\textstyle\coprod}_{\alpha \in J}{{\mathbf{B}}G}_\alpha\) for some groups \(G_\alpha\).
  • Colimits, pullbacks
  • Geometric realization/nerve adjunction
  • \(\mathop{\mathrm{Maps}}_{\mathsf{C}} = \colim(\Delta^0 \to \mathsf{C}{ {}^{ \scriptscriptstyle\times^{2} } } \leftarrow[\Delta^1, \mathsf{C}])\)
  • Pro and Ind objects
  • Symmetric monoidal categories
  • Weak equivalences attachments/Pasted%20image%2020220505175656.png
  • Contractible choices: attachments/Pasted%20image%2020220505181131.png
  • Limits and colimits attachments/Pasted%20image%2020220505181209.png

Floer

  • The Arnold conjecture
  • Topological categories
  • Flow categories
  • The action functional on loop spaces \(f\mapsto \int_{{\mathbb{B}}^2} f^*\omega\) mapping \({\mathcal{L}}M\to {\mathbf{R}}\).
  • Paths as cylinders: \([{\mathbf{R}}, {\mathcal{L}}M] \cong [{\mathbf{R}}\times S^1, M]\).
  • The Floer homotopy theorem: attachments/Pasted%20image%2020220505003438.png
Links to this page
#todo/untagged #todo/create-links