Resources: https://math.mit.edu/classes/18.783/2017/Lecture1.pdf Topics to discuss: For \(X = S^1\), finding \(X({\mathbf{Q}})\) Finding one point in \(X({\mathbf{Q}})\) and using it to “generate” all of \(X({\mathbf{Q}})\). ${\mathbf{A}}^1_{/ {{\mathbf{Q}}}} $ as a moduli space for \(X({\mathbf{Q}})\). Defining projective space In coordinates: e.g. ${\mathbf{P}}^2_{/ {{\mathbf{C}}}} $ is \({\left[ {a:b:c} \right]} = \left\{{{\left[ {a,b,c} \right]} \in {\mathbf{C}}^3}\right\}/ \sim\) where \({\left[ {a,b,c} \right]}\sim {\left[ {\lambda a, \lambda b, \lambda c} \right]}\) for \(\lambda \in U({\mathbf{C}})\), so the space of lines through \(\mathbf{0}\). Topological description: \({\mathbf{RP}}^n = {\mathbf{R}}^{n+1}/C_2\) and \({\mathbf{CP}}^n = {\mathbf{C}}^{n+1}/C_2\) for \(C_2 \curvearrowright k^n\) the antipodal action. E.g. \({\mathbf{RP}}^1 {\mathbf{P}}^1({\mathbf{R}}) = {\mathbf{P}}({\mathbf{R}}^1) = {\mathbf{R}}^2/{\mathbf{G}}_m \cong S^1\) is the space of lines in \({\mathbf{R}}^2\) and \({\mathbf{CP}}^1 = {\mathbf{P}}^1({\mathbf{C}}) = {\mathbf{P}}({\mathbf{C}}^1) = {\mathbf{C}}^2/{\mathbf{G}}_m \cong S^2\). Here \({\mathbf{G}}_m({\mathbf{R}}) = {\mathbf{R}}^{\times}= U({\mathbf{R}}) = {\mathbf{R}}\setminus\left\{{0}\right\}\) and similarly \({\mathbf{G}}_m({\mathbf{C}}) = {\mathbf{C}}^{\times}= {\mathbf{C}}\setminus\left\{{0}\right\}\). \({\mathbf{A}}^1\hookrightarrow{\mathbf{P}}^1\) by \({\left[ {x} \right]} \mapsto {\left[ {x: 1} \right]}\) or \({\left[ {x} \right]}\mapsto {\left[ {1: x} \right]}\), so \({\mathbf{P}}^1 = {\mathbf{A}}^1{ \coprod_{x\mapsto 1/x} } {\mathbf{A}}^1\). Here we think of \({\left[ {1: 0} \right]}\) as the “point (hyperplane) at infinity” and \({\left[ {0: 1} \right]}\) as zero. For \({\mathbf{P}}^2\): to parameterize all lines, fix \(\mathbf{0}\in {\mathbf{A}}^3\), cast a ray and intersect with the plane \(\left\{{z=1}\right\} \cong {\mathbf{A}}^2\); this is the embedding \({\left[ {a, b} \right]}\mapsto {\left[ {a,b,1} \right]}\). You get every line this way except for an \({\mathbf{P}}^1\) worth in the \(z=0\) plane, so \({\mathbf{P}}^2 \cong {\mathbf{A}}^2{\textstyle\coprod}{\mathbf{P}}^1\). Similarly \({\mathbf{P}}^1 \cong {\mathbf{A}}^1 {\textstyle\coprod}{\mathbf{P}}^0 = {\mathbf{A}}^1{\textstyle\coprod}{\operatorname{pt}}\) by projecting onto the \(y=1\) line. Leads to a CW decomposition. Examples: Count points in coordinates in \({\mathbf{A}}^1(K)\) for \(K = { \mathbf{F} }_q\) to get \({\mathbf{A}}^1({ \mathbf{F} }_q) = q\). Count points in coordinates to get \({\mathbf{P}}^1(K) = q+1\). Need decomposision \({\mathbf{P}}^1 = {\mathbf{A}}^1 {\textstyle\coprod}{\left[ {1: 0} \right]}\). Polynomial functions on projective space: the homogenization procedure Homogeneous of degree \(d\) iff \(F(\lambda x, \lambda y, \lambda z) = \lambda^2 F(x, y, z)\). Rational points on circles Projective Space Elliptic Curves Mordell-Weil Mazur’s theorem Examples