Hom and Ext
\envlist
-
\(\mathop{\mathrm{Hom}}_R(A, {-})\) is:
- Covariant
- Left-exact
- Is a functor that sends \(f:X\to Y\) to \(f_*: \mathop{\mathrm{Hom}}(A, X) \to \mathop{\mathrm{Hom}}(A, Y)\) given by \(f_*(h) = f\circ h\).
- Has right-derived functors \(\operatorname{Ext} ^i_R(A, B) \coloneqq R^i \mathop{\mathrm{Hom}}_R(A, {-})(B)\) computed using injective resolutions.
-
\(\mathop{\mathrm{Hom}}_R({-}, B)\) is:
- Contravariant
- Right-exact
- Is a functor that sends \(f:X\to Y\) to \(f^*: \mathop{\mathrm{Hom}}(Y, B) \to \mathop{\mathrm{Hom}}(X, B)\) given by \(f^*(h) = h\circ f\).
- Has left-derived functors \(\operatorname{Ext} ^i_R(A, B) \coloneqq L_i \mathop{\mathrm{Hom}}_R({-}, B)(A)\) computed using projective resolutions.
-
For \(N \in ({R}, {S'}){\hbox{-}}\mathsf{biMod}\) and \(M\in ({R}, {S}){\hbox{-}}\mathsf{biMod}\), \(\mathop{\mathrm{Hom}}_R(M, N) \in ({S}, {S'}){\hbox{-}}\mathsf{biMod}\).
- Mnemonic: the slots of \(\mathop{\mathrm{Hom}}_R\) use up a left \(R{\hbox{-}}\)action. In the first slot, the right \(S{\hbox{-}}\)action on \(M\) becomes a left \(S{\hbox{-}}\)action on Hom. In the second slot, the right \(S'{\hbox{-}}\)action on \(N\) becomes a right \(S'{\hbox{-}}\)action on Hom.
\envlist
- \(\operatorname{Ext} ^{>1}(A, B) = 0\) for any \(A\) projective or \(B\) injective.
A maps \(A \xrightarrow{f} B\) in ${}{R}{\mathsf{Mod}} $ is injective if and only if \(f(a) = 0_B \implies a = 0_A\). Monomorphisms are injective maps in ${}{R}{\mathsf{Mod}} $.
Write \(F({-}) \coloneqq\mathop{\mathrm{Hom}}_R(A, {-})\). This is left-exact and thus has right-derived functors \(\operatorname{Ext} ^i_R(A, B) \coloneqq R^iF(B)\). To compute this:
-
Take an injective resolution: \begin{align*} 1 \to B \xrightarrow{{\varepsilon}} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \cdots .\end{align*}
-
Remove the augmentation \({\varepsilon}\) and just keep the complex \begin{align*} I^{-}\coloneqq\qty{ 1 \xrightarrow{d^{-1}} I^0 \xrightarrow{d^0} I^1 \xrightarrow{d^1} \cdots } .\end{align*}
-
Apply \(F({-})\) to get a new (and usually not exact) complex \begin{align*} F(I)^{-}\coloneqq\qty{ 1 \xrightarrow{{{\partial}}^{-1}} F(I^0) \xrightarrow{{{\partial}}^0} F(I^1) \xrightarrow{{{\partial}}^1} \cdots } ,\end{align*} where \({{\partial}}^i \coloneqq F(d^i)\).
-
Take homology, i.e. kernels mod images: \begin{align*} R^iF(B) \coloneqq{ \ker d^i \over \operatorname{im}d^{i-1}} .\end{align*}
Note that \(R^0 F(B) \cong F(B)\) canonically:
-
This is defined as \(\ker {{\partial}}^0 / \operatorname{im}{{\partial}}^{-1} = \ker {{\partial}}^0 / 1 = \ker {{\partial}}^0\).
-
Use the fact that \(F({-})\) is left exact and apply it to the augmented complex to obtain \begin{align*} 1 \to F(B) \xrightarrow{F({\varepsilon})} F(I^0) \xrightarrow{{{\partial}}^0} F(I^1) \xrightarrow{{{\partial}}^1} \cdots .\end{align*}
-
By exactness, there is an isomorphism \(\ker {{\partial}}^0 \cong F(B)\).
\(\phi: \mathop{\mathrm{Hom}}_{{\mathbf{Z}}}({\mathbf{Z}}, {\mathbf{Z}}/n) \xrightarrow{\sim} {\mathbf{Z}}/n\), where \(\phi(g) \coloneqq g(1)\).
-
That this is an isomorphism follows from
-
Surjectivity: for each \(\ell \in {\mathbf{Z}}/n\) define a map \begin{align*} \psi_y: {\mathbf{Z}}&\to {\mathbf{Z}}/n \\ 1 &\mapsto [\ell]_n .\end{align*}
-
Injectivity: if \(g(1) = [0]_n\), then \begin{align*} g(x) = xg(1) = x[0]_n = [0]_n .\end{align*}
-
\({\mathbf{Z}}{\hbox{-}}\)module morphism: \begin{align*} \phi(gf) \coloneqq\phi(g\circ f) \coloneqq(g\circ f)(1) = g(f(1)) = f(1)g(1) = \phi(g)\phi(f) ,\end{align*} where we’ve used the fact that \({\mathbf{Z}}/n\) is commutative.
- \(\mathop{\mathrm{Hom}}_{\mathbf{Z}}({\mathbf{Z}}/m, {\mathbf{Z}}) = 0\).
- \(\mathop{\mathrm{Hom}}_{\mathbf{Z}}({\mathbf{Z}}/m, {\mathbf{Z}}/n) = {\mathbf{Z}}/d\).
- \(\mathop{\mathrm{Hom}}_{\mathbf{Z}}({\mathbf{Q}}, {\mathbf{Q}}) = {\mathbf{Q}}\).
-
\(\operatorname{Ext} _{\mathbf{Z}}({\mathbf{Z}}/m, G) \cong G/mG\)
- Use \(1 \to {\mathbf{Z}}\xrightarrow{\times m} {\mathbf{Z}}\xrightarrow{} {\mathbf{Z}}/m \to 1\) and apply \(\mathop{\mathrm{Hom}}_{\mathbf{Z}}({-}, {\mathbf{Z}})\).
- \(\operatorname{Ext} _{\mathbf{Z}}({\mathbf{Z}}/m, {\mathbf{Z}}/n) = {\mathbf{Z}}/d\).
TFAE in ${}_{R}{\mathsf{Mod}} $:
- A SES \(0\to A\to B \to C\to 0\) is split.
- ?