AWS 2022: Automorphic Forms Beyond \(\operatorname{GL}_2\)

Tags: #projects/active

Refs: Langlands

Resources

Motivating problems

  • Algebraicity or rationality of special values of automorphic \(L{\hbox{-}}\)functions
    • E.g. Euler’s proof that \(\zeta(2 k)=(-1)^{k+1} \pi^{2 k} \frac{B_{2 k}}{2(2 k) !}\) is algebraic and in fact rational up to a transcendental factor.
  • Bloch-Kato conjecture
  • Gan--Gross--Prasad conjecture
  • Iwasawa main conjecture for \(\operatorname{GL}_2\)
  • Understanding automorphic forms on unitary groups (to motivate \(p{\hbox{-}}\)adic analogs later)
  • Shimura’s proof in [Shi75] of algebraicity of certain values of the Rankin-Selberg convolution, i.e. the Rankin–Selberg method.
  • Ramanujan-Petersson conjecture
  • Arthur's conjecture
  • Adam's conjecture

Topics

Background

Notes

  • Fermat’s Last Theorem: A prime \(p\) does not divide the class number of the cyclotomic field \(\mathbb{Q}\left(e^{2 \pi i / p}\right)\) if and only if \(p\) does not divide the numerators of the Bernoulli numbers \(B_{2}, B_{4}, \ldots, B_{p-3}\). This leads to proofs of special cases of Fermat’s Last Theorem.
  • Rationality of L functions: try to reduce to a question about Eisenstein series. Strategy: attachments/Pasted image 20220210180347.png
  • Twisted coinvariant spaces: attachments/Pasted image 20220210225134.png
#projects/active