Tags: #projects/active
Refs: Langlands
Resources
- AWS website: https://www.math.arizona.edu/~swc/
 - My notes project: Automorphic Forms and Langlands Kevin Buzzard Notes
 - Geometric Langlands talks: https://math.uchicago.edu/~amathew/GL2021-22.html
 - 
          To read: see https://www.math.arizona.edu/~swc/aws/2022/2022EischenNotes.pdf 
         
Motivating problems
- 
          Algebraicity or rationality of special values of automorphic \(L{\hbox{-}}\)functions
    
- E.g. Euler’s proof that \(\zeta(2 k)=(-1)^{k+1} \pi^{2 k} \frac{B_{2 k}}{2(2 k) !}\) is algebraic and in fact rational up to a transcendental factor.
 
 - Bloch-Kato conjecture
 - Gan--Gross--Prasad conjecture
 - Iwasawa main conjecture for \(\operatorname{GL}_2\)
 - Understanding automorphic forms on unitary groups (to motivate \(p{\hbox{-}}\)adic analogs later)
 - Shimura’s proof in [Shi75] of algebraicity of certain values of the Rankin-Selberg convolution, i.e. the Rankin–Selberg method.
 - Ramanujan-Petersson conjecture
 - Arthur's conjecture
 - Adam's conjecture
 
Topics
- Admissible representation
 - Hecke character
 - p-adic zeta function
 - cusp form
 - Automorphic form
 - The Hecke algebra
 - The Tate curve.
 - Siegel modular forms
 - The Hodge bundle
 - Maass–Shimura operators
 - Rankin–Cohen brackets
 - Hecke eigenform
 - semisimple reductive linear algebraic groups
 - adelic group
 - The Satake isomorphism
 - Principal series representations
 - Hermitian spaces
 - local theta correspondence
 - Tate's thesis
 - 
          New terms:
    
- tempered representations
 - packets
 - theta lifts
 - cusp forms
 - quasi-split
 
 
Background
- 
          Arithmetic geometry
    
- The Hasse Principle
 
 - ANT:
 - 
          Modular forms:
    
- Artin L function
 - modular form
 
 - 
          Group cohomology
    
- invariants and coinvariants
 - Frobenius reciprocity
 
 - 
          Algebraic groups
    
- root system
 - Levi decomposition
 - parabolic and Borel
 - unipotent radical
 
 - 
          Misc
    
- Langlands dual
 
 
Notes
- Fermat’s Last Theorem: A prime \(p\) does not divide the class number of the cyclotomic field \(\mathbb{Q}\left(e^{2 \pi i / p}\right)\) if and only if \(p\) does not divide the numerators of the Bernoulli numbers \(B_{2}, B_{4}, \ldots, B_{p-3}\). This leads to proofs of special cases of Fermat’s Last Theorem.
 - 
          Rationality of L functions: try to reduce to a question about Eisenstein series. Strategy: 
         - 
          Twisted coinvariant spaces: