Tags: #projects/active
Refs: Langlands Zhiwei Yun project group
Resources
- AWS website: https://www.math.arizona.edu/~swc/
- My notes project: Automorphic Forms and Langlands Kevin Buzzard Notes
- Geometric Langlands talks: https://math.uchicago.edu/~amathew/GL2021-22.html
- To read: see https://www.math.arizona.edu/~swc/aws/2022/2022EischenNotes.pdf
Motivating problems
-
Algebraicity or rationality of special values of automorphic \(L{\hbox{-}}\)functions
- E.g. Euler’s proof that \(\zeta(2 k)=(-1)^{k+1} \pi^{2 k} \frac{B_{2 k}}{2(2 k) !}\) is algebraic and in fact rational up to a transcendental factor.
- Bloch-Kato conjecture
- Gan–Gross–Prasad conjecture
- Iwasawa main conjecture for \(\operatorname{GL}_2\)
- Understanding automorphic forms on unitary groups (to motivate \(p{\hbox{-}}\)adic analogs later)
- Shimura’s proof in [Shi75] of algebraicity of certain values of the Rankin-Selberg convolution, i.e. the Rankin–Selberg method.
- Ramanujan-Petersson conjecture
- Arthur’s conjecture
- Adam’s conjecture
- Selberg 1/4 conjecture (open)
Topics
- Unsorted/admissible representation
- Hecke character
- p-adic zeta function
- cusp form
- automorphic form
- The Hecke algebra
- The Tate curve.
- Siegel modular forms
- The Hodge bundle
- Maass–Shimura operators
- Rankin–Cohen brackets
- Hecke eigenform
- semisimple reductive linear algebraic groups
- adelic group
- The Satake isomorphism
- Principal series representations
- Hermitian spaces
- local theta correspondence
- Tate’s thesis
- Steinberg representation
- Shimura variety
-
New terms:
- tempered representations
- packets
- theta lifts
- cusp forms
- quasi-split
- contragredient
Background
-
Arithmetic geometry
- The Hasse principle
- ANT:
-
Modular forms:
- Artin L function
- modular form
-
Group cohomology
- invariants and coinvariants
- Frobenius reciprocity
-
Algebraic groups
- root system
- Levi decomposition
- parabolic and Borel
- unipotent radical
-
Misc
- Langlands dual
Notes
- Fermat’s Last Theorem: A prime \(p\) does not divide the class number of the cyclotomic field \(\mathbb{Q}\left(e^{2 \pi i / p}\right)\) if and only if \(p\) does not divide the numerators of the Bernoulli numbers \(B_{2}, B_{4}, \ldots, B_{p-3}\). This leads to proofs of special cases of Fermat’s Last Theorem.
- Rationality of L functions: try to reduce to a question about Eisenstein series. Strategy:
- Twisted coinvariant spaces: