Monday, September 06

  • kperf:=n1k1pn¯k.

  • Absolute Galois group: Gk:=Gal(ks/k)Aut(¯k/k).

    • It’s possible for ¯k/k to not be Galois!
  • Archimedean fields: R,C. Everything else is nonarchimedean.

  • Local field:

    • Finite extension of R,Q,Qp,Fp((t)).
    • R,C,Fpk((t)), or a finite extension of Qp.
    • R,C,ff(R) for R a complete DVR with finite residue field
    • k a nondiscrete locally compact Hausdorff topological ring.
    • k the completion of a global field with respect to a nontrivial absolute value.
  • Global field: a number field (finite extension of Q) or a global function field.

    • Global function field: a finite extension of Fp(t), or the function field of a geometrically integral curve over Fpk
    • Equivalently: ff(A) for AAlgfg/Z with A an integral domain and dim\krull(A)=1.
  • Function field: an extension F/k where [F:k(x)]< for some x transcendental over k.

  • DVR: a local PID that is not a field.

  • Place:

    • For function fields, maximal ideals p of some valuations rings O. If p=t=tO, then t is a uniformizer.
    • Equivalence classes of valuations.