-
kperf:=⋃n≥1k1pn⊆¯k.
-
Absolute Galois group: Gk:=Gal(ks/k)≅Aut(¯k/k).
- It’s possible for ¯k/k to not be Galois!
-
Archimedean fields: R,C. Everything else is nonarchimedean.
-
Local field:
- Finite extension of R,Q,Qp,Fp((t)).
- R,C,Fpk((t)), or a finite extension of Qp.
- R,C,ff(R) for R a complete DVR with finite residue field
- k a nondiscrete locally compact Hausdorff topological ring.
- k the completion of a global field with respect to a nontrivial absolute value.
-
Global field: a number field (finite extension of Q) or a global function field.
- Global function field: a finite extension of Fp(t), or the function field of a geometrically integral curve over Fpk
- Equivalently: ff(A) for A∈Algfg/Z with A an integral domain and dim\krull(A)=1.
-
Function field: an extension F/k where [F:k(x)]<∞ for some x transcendental over k.
-
DVR: a local PID that is not a field.
-
Place:
- For function fields, maximal ideals p of some valuations rings O. If p=⟨t⟩=tO, then t is a uniformizer.
- Equivalence classes of valuations.