q
Last modified date: <%+ tp.file.last_modified_date() %>
- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links
Motvations
Motivic Galois groups
Interesting open question:
Inverse Galois
Problem: - Known completely if \(K = k(t)\) where $k= { \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu } $ is any field of characteristic zero.
-
Cyclic groups: cyclotomic fields
-
Finite abelian groups:
-
\(S_n\) and \(A_n\):
- Solvable groups:
-
Some sporadic groups:
-
\(\operatorname{PGL}\) in some cases:
-
The monster group:
-
Open for some finite simple groups of Lie type.
Phrased homotopically:
Methods:
- Hilbert irreducibility
- The rigidity method:
- Langlands:
Rigidity
Classical Modular forms
Adeles
Motivation: how do we “do analysis” on \({\mathbf{Q}}\) without passing to \({\mathbf{R}}\) (loses arithmetic information). In particular: harmonic/Fourier analysis, need local compactness.
Motivation from ANT: Let \(C_K\) be the idele class group \({\mathbf{A}}_k^{\times}/ k^{\times}\).
Setup
Hecke algebra
Idea: rep theory for finite groups generalized to reductive groups.
Character sheaves are a type of perverse sheaf.
Character sheaves:
Stacks
Why stacks?
Moduli of curves: \({\mathcal{M}_g}= [\operatorname{Hilb}^{(6n-1)(g-1)}({\mathbf{P}}^{5g-5-1})/\operatorname{PGL}_{5g-6}]\).
Bun_g
Level structure
Ideas:
- \(\Gamma(N) = \ker ({\operatorname{SL}}_2({\mathbf{Z}}) \xrightarrow{\pi_N} {\operatorname{SL}}_2({\mathbf{Z}}/N))\)
- \(\Gamma_0(N) = \pi_N^{-1}(B_{{\operatorname{SL}}_2({\mathbf{Z}}/N)})\)
- \(\Gamma_1(N) = \pi_N^{-1}(R_u B_{{\operatorname{SL}}_2({\mathbf{Z}}/N)})\) where \(U\) is the unipotent radical of a parabolic.
BunG