Untitled

q

Last modified date: <%+ tp.file.last_modified_date() %>


- Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - #todo/create-links


Motvations

Motivic Galois groups

attachments/Pasted%20image%2020220426011502.png attachments/Pasted%20image%2020220426005209.png attachments/Pasted%20image%2020220426005224.png attachments/Pasted%20image%2020220426005253.png

Interesting open question: attachments/Pasted%20image%2020220426005326.png

Inverse Galois

Problem: attachments/Pasted%20image%2020220425203818.png attachments/Pasted%20image%2020220425203831.png attachments/Pasted%20image%2020220425203631.png - Known completely if \(K = k(t)\) where $k= { \mkern 1.5mu\overline{\mkern-1.5muk\mkern-1.5mu}\mkern 1.5mu } $ is any field of characteristic zero.

  • Cyclic groups: cyclotomic fields attachments/Pasted%20image%2020220425202826.png

  • Finite abelian groups: attachments/Pasted%20image%2020220425202958.png attachments/Pasted%20image%2020220425203854.png

  • \(S_n\) and \(A_n\): attachments/Pasted%20image%2020220425203932.png

    • Solvable groups: attachments/Pasted%20image%2020220425204002.png
  • Some sporadic groups: attachments/Pasted%20image%2020220425204041.png

  • \(\operatorname{PGL}\) in some cases: attachments/Pasted%20image%2020220425203232.png

  • The monster group: attachments/Pasted%20image%2020220425204130.png

  • Open for some finite simple groups of Lie type.

Phrased homotopically: attachments/Pasted%20image%2020220425203514.png

Methods:

  • Hilbert irreducibility attachments/Pasted%20image%2020220425204243.png attachments/Pasted%20image%2020220425204226.png
  • The rigidity method: attachments/Pasted%20image%2020220425204324.png attachments/Pasted%20image%2020220425204354.png attachments/Pasted%20image%2020220425204411.png attachments/Pasted%20image%2020220425204432.png attachments/Pasted%20image%2020220425204451.png
  • Langlands: attachments/Pasted%20image%2020220425204648.png attachments/Pasted%20image%2020220425204717.png attachments/Pasted%20image%2020220426000725.png

attachments/Pasted%20image%2020220426005648.png

Rigidity

attachments/Pasted%20image%2020220426113945.png attachments/Pasted%20image%2020220426114020.png

attachments/Pasted%20image%2020220425202549.png

attachments/Pasted%20image%2020220425203135.png attachments/Pasted%20image%2020220426005715.png attachments/Pasted%20image%2020220426005732.png attachments/Pasted%20image%2020220426010548.png

attachments/Pasted%20image%2020220426010714.png attachments/Pasted%20image%2020220426011119.png attachments/Pasted%20image%2020220426011142.png attachments/Pasted%20image%2020220426011248.png attachments/Pasted%20image%2020220426011305.png

attachments/Pasted%20image%2020220426011733.png

attachments/Pasted%20image%2020220426094340.png attachments/Pasted%20image%2020220426102715.png

attachments/Pasted%20image%2020220426113838.png

Classical Modular forms

attachments/Pasted%20image%2020220425183028.png attachments/Pasted%20image%2020220425183055.png

attachments/Pasted%20image%2020220425183631.png attachments/Pasted%20image%2020220425183655.png attachments/Pasted%20image%2020220425184007.png attachments/Pasted%20image%2020220425184013.png attachments/Pasted%20image%2020220425184033.png attachments/Pasted%20image%2020220425184044.png

Adeles

Motivation: how do we “do analysis” on \({\mathbf{Q}}\) without passing to \({\mathbf{R}}\) (loses arithmetic information). In particular: harmonic/Fourier analysis, need local compactness.

attachments/Pasted%20image%2020220425185238.png attachments/Pasted%20image%2020220129175344.png

attachments/Pasted%20image%2020220425185709.png

Motivation from ANT: Let \(C_K\) be the idele class group \({\mathbf{A}}_k^{\times}/ k^{\times}\). attachments/Pasted%20image%2020220425185825.png

attachments/Pasted%20image%2020220425185926.png attachments/Pasted%20image%2020220425190444.png attachments/Pasted%20image%2020220425190503.png attachments/Pasted%20image%2020220425190607.png attachments/Pasted%20image%2020220425190741.png
attachments/Pasted%20image%2020220425190906.png

Setup

attachments/Pasted%20image%2020220425194602.png

attachments/Pasted%20image%2020220425191933.png

attachments/Pasted%20image%2020220425192029.png

attachments/Pasted%20image%2020220425192206.png

attachments/Pasted%20image%2020220425192237.png

attachments/Pasted%20image%2020220425192307.png attachments/Pasted%20image%2020220425192318.png attachments/Pasted%20image%2020220425192549.png

attachments/Pasted%20image%2020220425192652.png attachments/Pasted%20image%2020220425192704.png attachments/Pasted%20image%2020220425192857.png attachments/Pasted%20image%2020220425193135.png

Hecke algebra

Idea: rep theory for finite groups generalized to reductive groups. attachments/Pasted%20image%2020220425194001.png

attachments/Pasted%20image%2020220425193837.png attachments/Pasted%20image%2020220425193913.png attachments/Pasted%20image%2020220425193935.png

Character sheaves are a type of perverse sheaf. attachments/Pasted%20image%2020220425194045.png attachments/Pasted%20image%2020220425194116.png

Character sheaves: attachments/Pasted%20image%2020220425194637.png attachments/Pasted%20image%2020220425194703.png attachments/Pasted%20image%2020220425194817.png

attachments/Pasted%20image%2020220425200939.png attachments/Pasted%20image%2020220425201001.png attachments/Pasted%20image%2020220425201021.png attachments/Pasted%20image%2020220425201057.png attachments/Pasted%20image%2020220425201112.png

attachments/Pasted%20image%2020220425201132.png

Stacks

Why stacks? attachments/Pasted%20image%2020220426012946.png attachments/Pasted%20image%2020220426013503.png

attachments/Pasted%20image%2020220426014052.png

attachments/Pasted%20image%2020220425230133.png attachments/Pasted%20image%2020220425234046.png

attachments/Pasted%20image%2020220425234055.png attachments/Pasted%20image%2020220425233813.png

attachments/Pasted%20image%2020220425230151.png attachments/Pasted%20image%2020220425230215.png

Moduli of curves: \({\mathcal{M}_g}= [\operatorname{Hilb}^{(6n-1)(g-1)}({\mathbf{P}}^{5g-5-1})/\operatorname{PGL}_{5g-6}]\).

attachments/Pasted%20image%2020220425230449.png attachments/Pasted%20image%2020220425230722.png

attachments/Pasted%20image%2020220426013106.png attachments/Pasted%20image%2020220426013211.png attachments/Pasted%20image%2020220426013255.png

Bun_g

attachments/Pasted%20image%2020220426012436.png attachments/Pasted%20image%2020220426013659.png

Level structure

attachments/Pasted%20image%2020220425202450.png attachments/Pasted%20image%2020220425225403.png attachments/Pasted%20image%2020220425201853.png

attachments/Pasted%20image%2020220425215050.png attachments/Pasted%20image%2020220425220819.png

Ideas:

  • \(\Gamma(N) = \ker ({\operatorname{SL}}_2({\mathbf{Z}}) \xrightarrow{\pi_N} {\operatorname{SL}}_2({\mathbf{Z}}/N))\)
  • \(\Gamma_0(N) = \pi_N^{-1}(B_{{\operatorname{SL}}_2({\mathbf{Z}}/N)})\)
  • \(\Gamma_1(N) = \pi_N^{-1}(R_u B_{{\operatorname{SL}}_2({\mathbf{Z}}/N)})\) where \(U\) is the unipotent radical of a parabolic.

attachments/Pasted%20image%2020220425215423.png attachments/Pasted%20image%2020220425215436.png attachments/Pasted%20image%2020220425215449.png attachments/Pasted%20image%2020220425215537.png attachments/Pasted%20image%2020220425215621.png

BunG

attachments/Pasted%20image%2020220425225940.png

attachments/Pasted%20image%2020220425201157.png attachments/Pasted%20image%2020220425201210.png

#todo/untagged #todo/add-references #todo/create-links