Tags: #projects/notes/reading #projects/active #projects/notes Refs: spectral sequence
Applications of Spectral Sequences
Notation and Remarks
- For \(M\) a manifold, \(T(M)\) is the unit tangent bundle of \(M\)
- For \(R\) a ring \(R\delta_i\) denotes a copy of \(R\) appearing in the \(i\)th (co)homological degree
- \(S^n \subset {\mathbf{R}}^{n+1}\) and \(S^{2n-1} \subset {\mathbf{C}}^n\)
-
Theorem: \(F \to E \to B\) a fibration results in \(E_2^{p,q} = H^p(B, H^q(F; G)) = H^p(B;G) \otimes H^q(F; G)\) for nice enough spaces \(X\) and groups \(G\)
- Corollary: \(H^n(X\times Y) = \displaystyle\bigoplus_{p+q=n} H^p(X, H^q(Y))\)
-
Facts about tensor products
- \((rm)\otimes n = r(m\otimes n) =m \otimes(rn)\)
- \((r+s)(m\otimes n) = rm\otimes n + sm\otimes n\)
- \({\mathbf{Z}}_p \otimes_{\mathbf{Z}}{\mathbf{Z}}_q = {\mathbf{Z}}/\gcd(p,q)\) and \(\gcd(p,q) = 1\) yields 0.
-
Some computations:
- \({\mathbf{Z}}_n \otimes_{\mathbf{Z}}{\mathbf{Q}}= 0\)
- \({\mathbf{Z}}_n \otimes_{\mathbf{Z}}{\mathbf{Q}}/{\mathbf{Z}}= 0\)
- \({\mathbf{Q}}\otimes_{\mathbf{Z}}{\mathbf{Q}}= {\mathbf{Q}}\)
- \(({\mathbf{Q}}/{\mathbf{Z}})\otimes_{\mathbf{Z}}{\mathbf{Q}}= 0\)
- \({\mathbf{Q}}/{\mathbf{Z}}\otimes_{\mathbf{Z}}{\mathbf{Q}}/{\mathbf{Z}}= 0\)
- \(R[x]\otimes_R S \cong S[x]\)
- \(k \to K\) a field extension: \(k[x]/(f) \otimes_k K \cong K[x]/(f)\)
- Symmetric, Associative
- \((\oplus A_i )\otimes B = \oplus(A_i \otimes B)\)
- \({\mathbf{Z}}\otimes A = A\)
- \({\mathbf{Z}}_n \otimes A = \frac{A}{nA}\)
List of Results
-
A simply connected \(n\)-dimensional manifold \(M_n\) is orientable
- Use \(S^{n-1} \to T(M_n) \to M_n\)
-
\(H^*({\mathbf{CP}}^2) = {\mathbf{R}}\delta_0 + {\mathbf{R}}\delta_2 + {\mathbf{R}}\delta_4\)
- Use \(S^1 \to S^5 \to{\mathbf{CP}}^2\)
-
\(H^*({\mathbf{CP}}^2) = \frac{{\mathbf{R}}[x]}{(x^3)}\)
- Use \(S^1 \to S^5 \to{\mathbf{CP}}^2\)
-
\(H^*({\mathbf{CP}}^n) = \displaystyle\sum_{i=0}^n{\mathbf{R}}\delta_{2i}\)
- Use \(S^1 \to S^{2n+1} \to{\mathbf{CP}}^n\)
-
\(H^*({\mathbf{CP}}^n) = \frac{{\mathbf{R}}[x]}{(x^{n+1})}\)
- Use \(S^1 \to S^{2n+1} \to{\mathbf{CP}}^n\)
-
\(H^*(SO^3) = {\mathbf{Z}}\delta_0 + {\mathbf{Z}}_2\delta_2 + {\mathbf{Z}}\delta_3\)
- Use \(S^1 \to T(S^2) \to S^2\) and identify \(T(S^2) = SO^3\)
- Also use \(E_2^{p,q} = H^p(S^2) \otimes H^q(S^1)\)
-
\(H^*(SO^4) = ?\)
- Use \(SO^3 \to SO^4 \to S^3\)
-
\(H^*(U^n) = ?\)
- Use \(U^{n-1} \to U^n \to S^{2n-1}\)
-
\(H^*(\Omega S^2) = \displaystyle\sum_{i=0}^\infty {\mathbf{Z}}\delta_i\)
- Use \(\Omega S^2 \to PS^2 \to S^2\)
- Also use \(E_2^{p,q} = H^p(S^2, H^q(\Omega S^2))\)
-
\(H^*(\Omega S^3) = \displaystyle\sum_{i=0}^\infty {\mathbf{Z}}\delta_{2i}\)
- Use \(\Omega S^3 \to PS^3 \to S^3\)
-
\(H^*(\Omega S^n) = \displaystyle\sum_{i=0}^\infty {\mathbf{Z}}\delta_{i(n-1)}\)
- Use \(\Omega S^3 \to PS^3 \to S^3\)
-
\(H^*(\Omega S^2) = \frac{{\mathbf{Z}}[x]}{(x^2)} \otimes{\mathbf{Z}}\left\{{1,e, \frac{1}{2!}e^2,\cdots}\right\}, \dim x = 1, \dim e = 2\)
- Use \(\Omega S^3 \to PS^3 \to S^3\)
-
\(H^*(\Omega S^n) = \frac{{\mathbf{Z}}[x]}{(x^2)} \otimes{\mathbf{Z}}\left\{{1,e, \frac{1}{2!}e^2,\cdots}\right\}, \dim x = n-1, \dim e = 2(n-1_)\)
- Use \(\Omega S^3 \to PS^3 \to S^3\)
List of Fibrations
-
\(S^1 \to S^{2n+1} \to{\mathbf{CP}}^n\), the Hopf fibration?
-
\(S^3 \to S^{4n+3} \to\mathbb{HP}^n\) the generalized Hopf fibration? (not used here)
-
Hopf Fibrations
-
\(S^0 \to S^1 \to S^1\)
-
Induced by $S^1
\subset
{\mathbf{R}}
^2\to
S^1 ={\mathbf{R}}
\cup
\infty
$
-
Induced by $S^1
-
\(S^1 \to S^3 \to S^2\)
- Induced by \(S^3 \subset {\mathbf{C}}^2 \to S^2 = {\mathbf{C}}\cup\infty\)
-
\(S^3 \to S^7 \to S^4\)
- Induced by \(S^7 \subset \mathbb{H}^2 \to S^4 = \mathbb{H}\cup\infty\)
-
\(S^7 \to S^{15} \to S^8\)
- Induced by \(S^{15} \subset\mathbb{O}^2 \to S^8 = \mathbb{O}\cup\infty\)
-
\(S^0 \to S^1 \to S^1\)
-
\(SO^3 \to SO^4 \to S^3\)
-
\(U^{n-1} \to U^n \to S^{2n-1}\)
- Can compute \(H^*(U^n)\)
-
\(\Omega S^n \to PS^n \to S^n\), path-loop fibration
-
\(\Omega S^3 \to PS^3 \to S^3\):
- Can compute \(H^*(\Omega S^n)\)
-
\(\Omega S^3 \to PS^3 \to S^3\):
-
\(Y \to X\times Y \to X\) (not used here)
-
Fibrations
-
\(SO_{n-1}(R) \to SO_n(R) \to S^{n-1}\)
-
\(S^n \xrightarrow{E} \Omega S^{n+1} \xrightarrow{H} \Omega S^{2n+1}\)
-
\(S^1 \to S^{2n+1} \to {\mathbf{CP}}^n\)
-
\(\Omega B \to PB \to B\)
-
\(K(A, n) \to K(B, n) \to K(C,n)\) for any SES of groups.
-
\(S^0 \to S^1 \to {\mathbf{RP}}^1 = S^1\)
-
\(S^1 \to S^3 \to {\mathbf{CP}}^1 = S^2\)
-
\(S^3 \to S^7 \to \mathbb{HP}^1 = S^4\)
-
\(S^7 \to S^{15} \to \mathbb{OP}^1 = S^8\)
Define the Stiefel Manifold: \begin{align*} \mathbb{V}(k, n) = \left\{{A \in \mathbb{F}^{nk}\mathrel{\Big|}A \mkern 1.5mu\overline{\mkern-1.5muA\mkern-1.5mu}\mkern 1.5mu^t = I}\right\} \end{align*}
and the Grassmanian
\begin{align*} G(k, n) = ? \end{align*}
Obtained from fiber bundles involving Stiefel Manifold :
- \(O^{n-1} \to O^n \to S^{n-1}\)
- \(SO^{n-1} \to SO^n \to S^{n-1}\)
- \(U^{n-1} \to U^n \to S^{2n-1}\)
- \(SU^{n-1} \to SU^n \to S^{2n-1}\)
- \(Sp^{n-1} \to Sp^n \to S^{4n-1}\)
- \(SO^n \to O^n \to S^0\)
- \(SU^n \to U^n \to S^1\)
- \(\mathbb{V}(k, k) \to \mathbb{V}(k, n) \to \mathbb{G}(k, n)\)
Interesting Spaces to Look At:
\(O, SO, Spin, U, or Sp\)