2021-10-05 quick_notes

Tags: #quick_notes

2021-10-05

DAG-X

Tags: #reading_notes #derived #infinity_cats

Derived AG: https://people.math.harvard.edu/~lurie/papers/DAG-X.pdf

dg Lie algebras :

attachments/2021-10-05_00-03-49.png

elliptic curve and deformation theory :

attachments/2021-10-05_00-05-28.png

presentable infinity category. deformation-obstruction theory :

attachments/2021-10-05_00-08-54.png

k-linear category :

attachments/2021-10-05_00-19-40.pngattachments/2021-10-05_00-21-36.pngattachments/2021-10-05_00-28-30.pngattachments/2021-10-05_00-30-48.pngattachments/2021-10-05_00-33-46.pngattachments/2021-10-05_00-34-14.png

10:49

Weak weak approximation would imply a positive answer to the inverse Galois problem.

20:02

attachments/2021-10-05_20-02-50.png

Elliptic Cohomology Paper

Tags: #stable_homotopy #physics #summaries

Refs: Elliptic cohomology, Thom-Dold, [[Orientability of spectra|orientability]], formal group law, ring spectra, Bousfield localization, [[Topological modular forms|tmf]],

Reference: M-theory, type IIA superstrings, and elliptic cohomology https://arxiv.org/pdf/hep-th/0404013.pdf

attachments/2021-10-05_20-39-39.pngattachments/2021-10-05_20-40-20.pngattachments/2021-10-05_20-41-16.pngattachments/2021-10-05_20-41-33.pngattachments/2021-10-05_20-41-56.pngattachments/2021-10-05_20-42-42.pngattachments/2021-10-05_20-43-37.pngattachments/2021-10-05_20-44-09.pngattachments/2021-10-05_20-44-36.pngattachments/2021-10-05_20-45-25.pngattachments/2021-10-05_20-46-47.pngattachments/2021-10-05_20-48-43.pngattachments/2021-10-05_20-51-54.pngattachments/2021-10-05_20-51-38.png

22:49

  • Hom is a continuous functor, i.e. it preserves limits in both variables. Just remember that the first argument is contravariant, so \begin{align*} \cocolim_i \cocolim_j \mathsf{C}(A_i, B_j) = \mathsf{C}(\colim_i A_i, \cocolim_j B_j) .\end{align*}

  • tannaka duality and tannaka reconstruction :

attachments/2021-10-05_23-01-03.pngattachments/2021-10-05_23-04-52.png

Volcano Stuff

  • How K-Theory goes:

    • Form a symmetric monoidal category \(\mathsf{C}\), which is a commutative monoid object in infinity categories.
    • Apply \({ \mathsf{core} }: \mathsf{Cat}\to{\mathsf{Grpd}}\) to replace \(\mathsf{C}\) with \({ \mathsf{core} }\mathsf{C}\), which separates isomorphism classes into separate connected components. It turns out this lands in \({\mathbb{E}}_\infty{\hbox{-}}\)spaces, i.e. commutative monoid objects in infinity-groupoids.
    • Apply group completion of \((\infty, 1){\hbox{-}}\)categories to get an abelian group object in infinity-groupoids.
    • Identify these with connective spectra.
    • Include into the category of all spectra.
  • Minor aside: \({\mathbf{B}}\mathsf{C} \coloneqq{ {\left\lvert {{ \mathcal{N}({\mathsf{C}}) }} \right\rvert} }\).

  • Start with the category of elliptic curves : should be pointed algebraic group, so a [[slice category|coslice category]] over a terminal object..?

    • Then take covering category: objects are based surjections \(E_1 \twoheadrightarrow E_2\), morphisms
    • Restrict to “covering spaces”: fibers are finite and discrete.
#quick_notes #reading_notes #derived #infinity_cats #stable_homotopy #physics #summaries