20:04
Tags: #category_theory
-
2-category : a category [[Enriched category|enriched]] in small categories, so hom sets are categories and compositions form bifunctors.
- Arrows in \(\mathsf{C}(x, y)(u\to v)\) are deformations of \(u\) to \(v\).
- 2-functors are enriched functors.
-
classifying space of a 2-cat: replace morphism cats \(C(x, y)\) with \({\mathbf{B}}C(x, y)\) to get a topological 1-cat, then take \({\mathbf{B}}C \coloneqq{ {\left\lvert {{ \mathcal{N}({C}) }} \right\rvert} }\).
-
For \(F:\mathsf{C}\to \mathsf{D}\), fixing \(p\in D\), can form a homotopy fiber 2-category \(y//F\).
Then \({\mathbf{B}}F: {\mathbf{B}}C\to {\mathbf{B}}D\) is a homotopy equivalence of spaces if \(B(y//F) \simeq{\operatorname{pt}}\) is contractible for all \(y\in \mathsf{D}\).
-
homotopy fiber cat: \(y//F\) is a lax comma category.
- Any monoidal category is a 2-category with one object.