Talbot, Lyne Moser Part 1
-
\({ \underset{(\infty, {2})}{ \mathsf{Cat}} }\): discrete set of objects, enriched in categories, \(2{\hbox{-}}\)morphisms are strictly associative?
-
\({ \underset{(\infty, {n})}{ \mathsf{Cat}} }\): all \(n+k{\hbox{-}}\)morphisms are invertible.
-
There is an embedding \(n{\hbox{-}}\mathsf{Cat}\hookrightarrow{ \underset{(\infty, {n})}{ \mathsf{Cat}} }\)with a specific model structure.
-
Model structure on \({\mathsf{sSet}}\): fibrant objects are Kan complexes, there is a Quillen equivalence between \({\mathsf{Top}}\) and \({\mathsf{sSet}}\)
-
\({ \underset{(\infty, {1})}{ \mathsf{Cat}} }\): enriched in \({ \underset{\infty}{ \mathsf{Grpd}} }\)
- Quasicategory : lifting property with lifting against inner horns online
attachments/image_2021-06-05-12-16-29.png❗-
Joyal model structure : \({\mathsf{sSet}}\) with quasicategories as fibrant objects.
-
Quillen equivalence to the Kan model structure by taking the homotopy coherent nerve?
-
Exercise: nerve is a Kan complex iff \(\mathsf{C}\) is a groupoid.
-
Complete Segal space : a simplicial space \(W \Delta^{\operatorname{op}}\to {\mathsf{sSet}}_{{\mathsf{Kan}}}\) with some conditions.
-
simplicial set \({\mathsf{sSet}}^{\Delta^{\operatorname{op}}}\) has a model structure where complete Segal spaces are the fibrant objects
-
Exercise: if \(W\) is a complete Segal space then \(i_1^* W\) is a quasicategory where \(i_1: \Delta \to \Delta^{\times 2}\) sends \([n]\) to \(([n], [0])\).
-
Limits: isomorphisms on hom sets, or terminal objects in the cone category :
attachments/image_2021-06-05-12-24-46.png❗- Latter is more universal, only requires pullbacks and cotensor to define?
-
Terminal objects: isomorphisms from slice category to \(\mathsf{C}\):
attachments/image_2021-06-05-12-25-36.png❗ -
Enriched definition of limits:
attachments/image_2021-06-05-12-27-23.png❗ -
Terminal objects: \(X_{/ {x}} \xrightarrow{\sim} X\) is a weak equivalence in \({\mathsf{sSet}}_{{ \mathsf{quasiCat} } }\).
-
All definitions of limits in \({ \underset{(\infty, {1})}{ \mathsf{Cat}} }\) recover the usual notions via the nerve.
-
Exercise: Show that the limit of \(F: I\to \mathsf{C}\) is the limit of its nerve?
-
Theorem: limit of \(F\) in \({\mathsf{sSet}}_{{ \mathsf{quasiCat} } }\) is a homotopy limit of its adjoint in \({\mathsf{sSet}}{\hbox{-}}\mathsf{Cat}_{{\mathsf{Kan}}}\), and the limit of its adjoint in ${\mathsf{sSet}}^{\Delta^{\operatorname{op}}}_{ \mathsf{CSS} } $.
-
Upshot: many different models, can move between different models.
12:58
Things to look up from written notes:
- Picard bundle
- Hasse invariant
- Connection on a bundle
- Frobenius lift
- lambda ring
- absolute Galois group
- For elliptic curves :
- What is the difference between local class field theory and global class field theory
- theta function
Talbot, Lyne Moser Part 2
-
Next: models of \({ \underset{\infty}{ \mathsf{Cat}} }{\infty, 2}\)
- Can take enrichment over ${ \mathsf{quasiCat} } $ or ${ \mathsf{CSS} } $
-
2-category : categories enriched in categories
-
Recall: \({ \mathsf{CSS} } = {\mathsf{Fun}}(\Delta^{\operatorname{op}}, {\mathsf{sSet}})\).
- We have \(\Delta \subseteq \mathsf{Cat}\) a full subcategory, we now want a version for \(2{\hbox{-}}\mathsf{Cat}\): \(\Theta_2^{\operatorname{op}}\).
- Turns out to be wreath product \(\Delta\wr\Delta\).
-
Idea: keep track of 2-morphisms, i.e. two-cells, can keep all of their possible compositions