2021-05-10

12:34

We haven’t been able to classify the rational points on modular curves!

Kirsten Wickelgren, Zeta functions and a quadratic enrichment.

Reference: Kirsten Wickelgren, Colloquium Presentation: zeta functions and a quadratic enrichment. Rational Points and Galois Representations workshop

Tags: #seminar_notes #homotopy_theory #algebraic_geometry #stable_homotopy #motivic Refs: motivic homotopy

Link to Diagram

  • Works more generally for a symmetric monoidal category
  • Finite dimensionality is replaced by objects being dualizable, so for \begin{align*} \one & \xrightarrow{m} A\otimes B \\ B\otimes A & \xrightarrow{{\varepsilon}} \one ,\end{align*} require

Link to Diagram

Link to Diagram

  • Then \(\operatorname{Tr}(\phi) \in \mathop{\mathrm{End}}_{\mathsf{C}}(\one, \one)\) is an endomorphism of the unit.

  • Example: Lefschetz fixed point theorem, \begin{align*} \operatorname{Tr}(\phi) = \sum_{x\in M, \phi(x) = x} \operatorname{Ind}_x \phi \in \mathop{\mathrm{End}}_{{\mathsf{ho}}{\mathsf{Sp}}}(\one) \xrightarrow{\deg \,\, \sim} {\mathbb{Z}} ,\end{align*} where we take the degree of a map between spheres.

    • \({\mathbb{S}}= \one \in {\mathsf{ho}}{\mathsf{Sp}}\).

    • Use that \(H^*({-}, {\mathbb{Q}})\) preserves tensor products, and apply the Kunneth formula: \begin{align*} H^*(\operatorname{Tr}(\phi)) &= \operatorname{Tr}(H^*(\phi)) \\ \implies \sum (-1)^i \operatorname{Tr}( H^i(\phi); H^i(M) {\circlearrowleft}) &= \sum_{x\in M, \phi(x) = x} \operatorname{Ind}_x \varphi .\end{align*}

  • Rationality of \(\zeta\):

attachments/image_2021-05-10-13-36-13.png
  • Use hocolims to glue spaces, but may not work in schemes.

    • Example: take \(X \coloneqq{\mathbb{P}}^n/{\mathbb{P}}^{n-1}\), then we’d want \(X({\mathbb{C}}) \cong S^{2n}\) and \(X({\mathbb{R}}) \cong S^n\)

    • Problem: this quotient isn’t a scheme. Can freely add these limits.

    • We want \({\mathbb{P}}^i / {\mathbb{P}}^{i-1}\) to be the building blocks or cells

  • Morel and Voevodsky, \({\mathbb{A}}^1\) stable homotopy category over \(k\), denoted \({\mathsf{SH}}(k)\).

  • Take an analog of degree, the Morel degree: \begin{align*} \deg: [{\mathbb{P}}^n/{\mathbb{P}}^{n-1}, {\mathbb{P}}^n/{\mathbb{P}}^{n-1} ] \xrightarrow{} {\operatorname{GW}}(k) .\end{align*}

    • Recovers degree on \(X({\mathbb{C}})\).
  • Grothendieck-Witt group: formal differences of isomorphism classes of nondegenerate symmetric bilinear forms.

    • Allow orthogonal direct sum and orthogonal direct difference.
  • Special form: the hyperbolic form \begin{align*} \left\langle{1}\right\rangle + \left\langle{-1}\right\rangle = \left\langle{a}\right\rangle + \left\langle{-a}\right\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} .\end{align*}

  • See rank, signature, discriminant of [[quadratic form|quadratic forms]].

  • Trace here will take values in \({\operatorname{GW}}(k)\).

  • Lefschetz fixed point theorem due to Hoyois:

attachments/image_2021-05-10-13-49-00.png
  • Notation: \(dZ^{{\mathbb{A}}^1}(t) = {\frac{\partial }{\partial t}\,} \log \zeta^{{\mathbb{A}}^1}(t) = \sum_{m\geq 1} \operatorname{Tr}(\phi^m)t^{m-1}\).

  • Prop: \begin{align*} \operatorname{rank}dZ^{{\mathbb{A}}^1}(t) = {\frac{\partial }{\partial t}\,} \log .\end{align*}

  • See Kapranov motivic zeta function :

    • Define \({\mathsf{K}}_0({\mathsf{Var}}_k)\) to be the group completion of varieties under cut-and-paste
    • Define \begin{align*} Z_X^m(t) \coloneqq\sum_{m\geq 0} [\operatorname{Sym}^m X] t^m \in {\mathsf{K}}_0 ({\mathsf{Var}}_k) {\left[\left[ t \right]\right] } .\end{align*}
    • Define an Euler characteristic \begin{align*} \chi_C^{{\mathbb{A}}^1}: K_0({\mathsf{Var}}_k) \to {\operatorname{GW}}(k) .\end{align*}
  • See Euler class, Hopf map

  • Major point: this is genuinely something new, isn’t just recovered by taking the compactly supported euler characteristic:

attachments/image_2021-05-10-13-56-27.png
  • Defines a zeta function for any endomorphism of any variety. Doesn’t need to be over \({\mathbb{F}}_p\), and doesn’t need to have Frobenius!

Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra

Tags: #THH #factorization_homology #seminar_notes Refs: nonabelian Poincare duality, factorization homology

Reference: Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra. MIT Topology Seminar.

attachments/image_2021-05-10-16-35-34.png attachments/image_2021-05-10-16-45-36.png
  • Can define operads and reduced operads as monoids in certain categories:
attachments/image_2021-05-10-16-47-55.png
  • See monadic bar construction and monoidal bar construction.

  • Examples of factorization homology : \begin{align*} \int_{S^1}A &&\simeq{\operatorname{THH}}(A) \\ \int_{T^n}A &&\simeq{\operatorname{THH}}^n(A) && \text{iterated THH} .\end{align*}

  • For \(\sigma\) the sign representation, \(\int_{S^\sigma} A \simeq\operatorname{THR}(A)\) for \(E_\sigma{\hbox{-}}C_2\) spectra.

    See Horev, Hessolholt-Madsen.

  • Axiomatic approach to factorization homology: take a left Kan extension of the following:

attachments/image_2021-05-10-17-05-53.png attachments/image_2021-05-10-17-09-08.png attachments/image_2021-05-10-17-13-16.png

where \(R{\hbox{-}}\)line is the \(\infty{\hbox{-}}\)category of line bundles up to equivalence?

  • Preserves \(G{\hbox{-}}\)colimits, so formally the Thom spectrum functor commutes with factorization homology.

  • In proof of theorem, use nonabelian Poincare duality to reduce a complicated gadget to a mapping space.

    • Also appears as a step in a later proof identifying \({\operatorname{THH}}_{C_2} ({ \mathsf{H} }{\mathbb{F}}_2) \approx { \mathsf{H} }{\mathbb{F}}_2 \wedge({\Omega}S^3)_+\).
    attachments/image_2021-05-10-17-27-00.png

For \(\operatorname{THR}\) on the algebra side, see Teena Gerhardt’s work? Haynes Miller suggests looking at the de Rham-Witt complex?

#quick_notes #seminar_notes #homotopy_theory #algebraic_geometry #stable_homotopy #motivic #THH #factorization_homology