2021-05-04

The reciprocity law for the twisted second moment of Dirichlet L-functions

Reference: The reciprocity law for the twisted second moment of Dirichlet L-functions https://arxiv.org/pdf/0708.2928.pdf

attachments/image_2021-05-04-14-31-20.png

The K-Theory of monoid sets

Reference: The \(K'\)-theory of monoid sets https://arxiv.org/pdf/1909.00297.pdf

K-Theory

attachments/image_2021-05-04-14-37-49.png
  • \(K'(A)\) defined for partially cancellative \(A{\hbox{-}}\)sets.
    • Important example: the pointed monoid \({\mathbb{N}}\coloneqq\left\{{{\operatorname{pt}}, 1, t, t^2, \cdots, }\right\}\).
  • Useful in toric geometry.
attachments/image_2021-05-04-14-39-27.pngattachments/image_2021-05-04-14-42-55.pngattachments/image_2021-05-04-14-43-58.png
  • The category \({\mathsf{FinSet}}_{{\scriptstyle { * } }}\) (see Finset ) of finite pointed sets is quasi-exact, and Barratt-Priddy-Quillen implies that \(K({\mathsf{FinSet}}_{\scriptstyle { * } }) \simeq{\mathbb{S}}\).

    • If \(A\) has no idempotents or units then \(K(A) \simeq{\mathbb{S}}\).
  • Group completion : comes from \({\Omega}^\infty {\Sigma}^\infty {\mathbf{B}}G_+\).

  • Big theorem: Devissage. But I have no clue what this means. Seems to say when \({\mathsf{K}}(A) \cong {\mathsf{K}}(B)\)?

attachments/image_2021-05-04-14-50-36.png
  • Cancel all of the things:
attachments/image_2021-05-04-14-52-14.png
  • Apparently easy theorem: \({\mathsf{K}}'({\mathbb{N}}) \simeq{\mathbb{S}}\).

  • The Picard group of \({\mathbb{P}}^1\) shows up:

attachments/image_2021-05-04-14-54-10.png

Stefan Schreieder, Refined unramified cohomology

Tags: #seminar_notes #algebraic_geometry

Reference: Stefan Schreieder, Refined unramified cohomology. Harvard/MIT AG Seminar talk.

attachments/image_2021-05-04-15-13-05.png attachments/image_2021-05-04-15-16-05.png
  • Interesting parts of the Coniveau spectral sequence: something coming from unramified cohomology, and something coming from algebraic cycles mod algebraic equivalence.

  • Failure of integral Hodge conjecture :

attachments/image_2021-05-04-15-17-53.png attachments/image_2021-05-04-15-27-07.png

Main theorem, works not just for smooth schemes, but in greater generality:

attachments/image_2021-05-04-15-40-03.pngattachments/image_2021-05-04-15-39-48.png
  • Torsion in the Griffiths group is generally not finitely generated.

    • Use an Enriques surface to produce \(({\mathbb{Z}}/2)^{\oplus \infty}\) in \(\mathop{\mathrm{Griff}}^3\).
  • See canonical class \(K_S\) for a surface, Abel-Jacobi invariants?

  • No Poincaré duality for Chow groups, at least not at the level of cycles. Need to pass to cohomology.

    • Dual \(\beta\) of \([K_S] \in H^2(S; {\mathbb{Z}}/2)\) generates the Brauer group \(\mathop{\mathrm{Br}}(S)\) of the surface. Note \(\beta\) is not algebraic.
  • Theorem: there exists a regular flat morphism proper \(S\to \operatorname{Spec}{\mathbb{C}}{\left[\left[ t \right]\right] }\) such that \(S_\eta\) is an Enriques surface, \(S_0\) is a union of ruled surfaces, and \(\mathop{\mathrm{Br}}(S) \twoheadrightarrow\mathop{\mathrm{Br}}(S_\eta)\).

  • See Zariski locally and étale locally.

  • unramified cohomology is linked to Milnor K theory.

Clausen on rep theory

Reference: https://www.youtube.com/watch?v=XTOwj1LvntM

#quick_notes #seminar_notes #algebraic_geometry