Tags: #todo #my_talks #category_theory
Intro Category Theory Talk
- Definition: category (objects, morphisms, composition)
-
Big list of examples
- \({\mathsf{Grp}}, {\mathsf{R}{\hbox{-}}\mathsf{Mod}}, {\mathsf{Alg}_{/k} }, {\mathsf{Top}}, \mathsf{Loc}\mathsf{RingSp}, [\mathsf{C}, \mathsf{D}]\),
- The free category on a poset
- \(\FinSet_+\), the category of finite linearly ordered sets with objects of the form \([n] = \left\{{0, \cdots, n}\right\}\).
- \(\Delta\) the simplex category : finite totally ordered sets.
- The groupoid associated to a group, general groupoids
- \({\mathsf{Grpd}}, \mathsf{Cat}\)
- \({\mathsf{Open}}(X)\) for \(X\in {\mathsf{Top}}\)
- \({\mathsf{sm}}{\mathsf{Mfd}}\)
- \({\mathsf{Sch}}\), ${\mathsf{Sch}}_{/ {S}} $
-
Definition: functor
-
Examples:
- \(\pi_1: {\mathsf{Top}}\to {\mathsf{Grp}}\)
- \(\pi_*: {\mathsf{Top}}\to {\mathsf{gr}\,}_{\mathbb{Z}}{\mathsf{Grp}}\)
-
Examples:
-
Definition: Natural transformations
- Interpretation as morphisms in \([\mathsf{C}, \mathsf{D}]\).
- Definition: isomorphism of objects
-
Equivalence of categories:
- Definition essentially surjective
- Definition: full functor
- Definition: faithful functor
- Definition: equivalence of categories
- Philosophy: isomorphism vs equivalence
-
Definition: adjunction
- Definition: unit of an adjunction and counit
- Examples:
-
Useful constructions
- Initial and terminal objects
-
Universal properties
- Quotient group or quotient topology
- Tensor product of modules
- Product and coproduct
- Pullback and pushout
- slice category and under category
- Colimit and limit
- coequalizer and equalizer
- Definition: presheaf and sheaf
- Definition: representable functor
-
Definition: Yoneda embedding
- Philosophy: functor of points
Further Topics
- reflective and coreflective subcategories
- cocontinuous functor and continuity of \(\mathop{\mathrm{Hom}}\).
- cocomplete category
- monad, algebra over a monad, and Beck's monadicity theorem
- monoid object
- monoidal category
- cofinal functor
- filtered category and filtered colimits