Chern Simons and TFTs MSRI Fall 2021

Tags: #todo #active_projects\ Refs: ?

Chern Simons and TFTs MSRI Fall 2021

Website link: https://www.msri.org/workshops/1026

Notes

Setup

  • Take \(G\) a Lie group and \({\mathfrak{g}}\), can consider \(G_\operatorname{ad}\) invariant polynomials on \({\mathfrak{g}}\), I’ll write this as \(k[{\mathfrak{g}}]^{G_\operatorname{ad}}\).
    • Todo: solidify what \(G_\operatorname{ad}\) is.
    • Need \(f(\operatorname{Ad} _g x) = f(x)\) for invariants.
  • Take flat principal \(G{\hbox{-}}\)bundles \(P\) on a 3-manifold \(M\).
  • There is a Chern-Wel morphism \(k[{\mathfrak{g}}]^{G_\operatorname{ad}} \to H^*(M; {\mathbb{R}})\) of \({\mathbb{C}}{\hbox{-}}\)algebras.
    • Interesting fact: for \(G\) compact or semisimple, \(H^*({\mathbf{B}}G; {\mathbb{C}}) \cong {\mathbb{C}}[{\mathfrak{g}}]^{G_\operatorname{Ad} }\).
  • A type of gauge theory
  • flat connection : needed for curvature to vanish, corresponds to solving equations of motion.
  • Curvature is given as \(F = da + A\vee A\) where \(A\) is a connection one-form:
    • An \(E{\hbox{-}}\)valued form is a differential operator on \({{\Gamma}\qty{E\otimes\Omega^* M} }\) which is map of graded modules, so \(D(v\otimes a) = Dv\otimes a + 1^{{\left\lvert {v} \right\rvert}}v\otimes da\).
    • Determined by a matrix of 1-forms
  • Take a Lie algebra-valued 1 form \(A\), then \(\operatorname{Tr}(A)\) is a 1-form and the Chern-Simons form is \(\operatorname{Tr}(dA \vee A + c A\wedgepower{3}\).
#todo #active_projects\